Equilibrium I NOTES #47

-	****		-						30	
1	What	16	HO		1h	rilli	m'	٠.	7.	,.,
		1.0		u				•		

A. Most reactions are REVERSIBLE!!!!

B. There are two different types of equilibrium.

PHYSICAL EQUILIBRIUM:

CHEMICAL EQUILIBRIUM:

ex:

C. Characteristics of Equilibrium....

1.

2.

3.

**** Equilibrium simulation demonstration....

D. Graphically, what does Eq look like?

1.
$$N_2O_4(g) \Leftrightarrow 2NO_2(g)$$

Concentration vs Time

Rate vs Time

2. Take a look at some more data of this reaction starting out at varying $[N_2O_4]$ and $[NO_2]$ concentrations.....

TABLE 14.1 The NO2-N2O4 System at 25°C

INITIAL CONCENTRATIONS (M)		EQUILI CONCENT (.)	TRATIONS	RATIO OF CONCENTRATIONS AT EQUILIBRIUM		
(NO ₂)	[N ₂ O ₄]	[604]	[N ₂ O ₄]	[NO ₂] [N ₂ O ₄]	[NO ₂] ² [N ₂ O ₄]	
0.000	0.670	0.0547	0.643	0.0851	4.65×10^{-3}	
0.0500	0.446	0.0457	0.448	0.102	4.66×10^{-3}	
0.0300	0.500	0.0475	0.491	0.0967	4.60×10^{-3}	
0.0400	0.600	0.0523	0.594	0.0880	4.60×10^{-3}	
-0.200	0.000	0.0204	0.0898	0.227	4.63×10^{-3}	

No matter what concentrations of N₂O₄ and NO₂ you start with, you will notice that the ratio of _ always a constant!

_ 1S

E. Writing Equilibrium Expressions	
1. The Law of Mass Action: the ratio of the [products] / [reactants] at equilibrium and at a constant particular reaction. 2. aA + bB \Leftrightarrow cC + dD	is constant for a
3. Never include SOLIDS or PURE LIQUIDS (like) in your eq expression. ex: decomposition of chalk: K' =	
Why?	
*** So, what <i>do</i> you include in your Eq expression??? 4. K _c vs K _p - The concentrations of the reactants/products in an Eq expression can either be expressin terms of partial pressures (K _p).	s in terms Molarity (K _c) or
a. So, in the reaction, $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$, the Eq expression can be written two ways.	
b. Do you suspect K _c and K _p are equal?	
c. What is the relationship between K_c and K_p ? $aA(g) \Leftrightarrow bB(g)$	
d. When would $K_c = K_p$???	
EX: For which reaction will $K_c = K_p$? a. $H_2(g) + Br_2(g) \Leftrightarrow 2 HBr(g)$ Dn =	

b. $2 H_2(g) + O_2(g) \Leftrightarrow 2 H_2O(g)$

Dn =

c. $H_2O(I) \Leftrightarrow H_2O(g)$

Dn =

Equilibrium II NOTES #48

5. Writing Eq expressi	ons for rxns with MULTIPLE EQUI	ILIBRIA.			
a. This often hap	ppens with the ionization of acids wi	th more than one a	acidic proto	n to donate (DI	PROTIC ACIDS).
rxn1: H ₂ CO ₃	$(aq) \Leftrightarrow H^+(aq) + HCO_3^-(aq)$		$K_{c}' =$		
rxn2:			K _c " =		
Overall:			K	c =	
* The E * If a re	eq expression can be written from the eaction can be expressed as the sum the equilibrium constants of the $\mathbf{K_c}$	of two or more rea	actions, the	e overall equati eq constant is g	on. given by the product of
	ng on how the equation is written. action is written in the opposite direc	ction?			
Ex:	$N_2O_4 \Leftrightarrow 2 NO_2$	VS VS	2 NO ₂ ⇔	N ₂ O ₄	
	$K_c =$		$\kappa_{c}' = \Gamma$		
	* K _c ' would be the	1004001944888848888888888888888888888888	$K_{c}' = $ of K_{c} .	к _с ' =	
b. What if the re-	action is balanced with different coe	fficients?			
Ex:	$N_2O_4 \Leftrightarrow 2 NO_2$	vs	$1/2\ N_2O_4$	⇔ NO ₂	
	$K_c =$		$K_c =$		
PRACTICE: ex: If K, for the following	g reaction, $N_2(g) + 3 H_2(g)$	> 2 NH2 (> is '	2 6x10 ⁻⁵ at	25°C what is	K for the following:
				25 C, What is	Re for the following.
$-3 N_2(g) + 9$	$H_2(g) \Leftrightarrow 6 NH_3$	K _c =			
- NH ₃ (g) ⇔	$1/2 N_2 (g) + 3/2 H_2$	K _c =			
- What would K	p be?	K _p =			
II. What ever does K	really tell us??				
1. The magnitude of K	tells us whether the forward reaction	on or the backward	l reaction is	favored. K	= [products]
- If K > 1	Γhe rxn is favored;	or the	are favo	ored.	[reactants]
** If K	is really big, we can say that the rea	ction goes to			

- If $K \le 1$ The _____ rxn is favored; or the _____ are favored.

** If K is really small, the reaction does not occur to any significant extent.

** It's	important to realize that the size of K and the time required to reach equilibrium are not directly related. In other words, a large K does not necessarily mean that the reaction will reach equilibrium quickly.
	- Time to achieve equilibrium is determined by the reaction rate which is determined by
e rxn progress	 K, on the other hand, is determined by, the relative stability of the products vs reactants. (Other similar driving forces will be discuss latersuch as the tendency towards disorder)
III. Predictir	ng the direction of a reaction.
For reaction valuable	ons that are NOT in equilibrium, we can still calculate the ratio of products to reactions. This ratio obtained, however, would not be K so instead, we would call such a value, Q or the Q is a piece of info that will allows make predictions about the reaction.
EX: The K _c for	the following reaction is 6.5×10^4 at 35° C. $2 \text{ NO (g)} + \text{Cl}_2 \text{ (g)} \Leftrightarrow 2 \text{ NOCl (g)}$
In a cert	tain experiment, 2.0x10 ⁻² mole of NO, 8.3x10 ⁻³ mole of Cl ₂ and 6.8 moles of NOCl are mixed in a 2.0 L flask.
	In which direction will the system proceed to reach equilibrium?
	the Q_c is than K_c , the reaction will have to proceed to the or towards the in to reach equilibrium.
2. Q > K	The ratio of [products] to [reactants] is too Need to convert back to
	Eq shifts to the to reach eq.
Q = K	The system is at Eq. (yeah!)
Q < K	The ratio of [products] to [reactants] is too Need to convert back to
	Eq shifts to the to reach eq.
*** 1115	t like our favoritest story.