NOTES #51 An Introduction to Acids & Bases | | a | Acid Definition Arrhenium Brønsted | ıs Acids: | | | when d | issolved i | n water, | increa | ses the | H ⁺ conce | ntration o | of the w | ater. | | | |-----|---------|---|-----------------------|--------------------|------------------------|------------------|-----------------------|---------------------------------|-----------------------|-------------------------|----------------------|------------------------|------------------|---------------------|----------------------------------|---------------| | * | | sted Acid - s | | | | á | a proton. | Γ | 1 | | Conjug | gate Base | : what | s left on | ce the H ⁺ | is removed. | | | | sted Base - s | | | | | | | | | Conjug | gate Acid | : what | s left on | ce the H ⁺ | is added. | | EX1 | 1: (| СН ₃ СООН (а | aq) | + | H ₂ O(1) | | = | | (| СН ₃ СС | OO (aq) | + | Н ₃ | O ⁺ (aq) | | | | | НаО | o ⁺ = the hyo | dronium | ion. F | H ⁺ is just | a simpl | ification. | H ₂ O ⁺ a | nd H ⁺ | should | l be used | complete | ly inter | changeab | oly! | | | EX2 | _ | NH ₃ (aq) | | + | 3 | H ₂ O | | <i>></i> | | | | • | , | Č | , | | | | * | * Notice the | e role H ₂ | O play | s in this r | eaction. | compar | e to the | exampl | le abov | e | | | | | | | EX3 | 3: Iden | tify the follo | wing as a | a Brons | sted acid o | or base | and write | it's resp | ected c | oniuga | ate partne | :: | | | | | | | | CN ⁻ | Č | | | HSO | | 1 | | , , | H ₂ S | | | С | 6 ^H 5 ^{NH} 3 | + | | | | ase propertie
er can act eitl | | | or a BAS | lEas | we saw al | oove. Th | is is re | ferred | to as | mall extent: | | 2 | . wan | er is a very _ | H | _electi
20 (l) | oryte and | i is, iieii
≠ | сс, а | H^{+} | (aq) | + (| OH (aq) | ony. 110v | vevei, i | t does to | mze to a s | illan extent. | | OR | what's | really going | on | 2 H ₂ O | (1) | | | | ; | ≐ | | | | | | | | | | * T | This ioniz | zation c | of water is | s often o | called AU | TOIONI | ZATI(| ON. | | | | | | | | | | rater only ion | | | | | | dict K _c t | o be?? | ? Why | <i>i</i> ? | | | | | | | | a | . Write out t | the K _c ex | pressio | on for this | reaction | n: | |] | K _c = | | | | | | | | | b | o. Since only | a small | fraction | n of the w | ater mo | olecules w | ill ionize | e, what | can w | e say abo | ut the [H ₂ | ₂ O]? | | | | | | c | . K _c · [H ₂ O] |] equals | a new I | K, which | we will | call K _w . | | | | | | | | | | | | | K _w is the ION
I. K _w just lik | | | | | | | | | | | | | | | | | | The concentra | | | | | | | | | | | | | | | | | | e. K _w is 1.0x | | | | | | | ** | | | | | | | | | | | w : * In pure v | | | |] are E0 | QUAL and | d the wat | ter is sa | aid to b | e NEUTI | RAL. At | 25°C, | what are | these con | centrations? | | | | | | | | | | * If [] | H ⁺] > [C | H], there | e is an excess o | f | and | the solution | is | | | | | | | | | | | * If [| H ⁺] < [C | H ⁻], there | e is an excess o | f | and | the solution | is | - | | EX: | Calcu | late the conc | entration | of OH | ions in | a HCl s | olution w | hose [H [†] | ⁺] is 1. | 3 M. | | | | | | | | 1 2 | 2. pH = | I scale.
nuse [H ⁺] and
the negative
as [H ⁺] INCE | e logarith | ım of tl | ne hydrog | en ion o | concentrat | ion. | pН | = - lo | og [H ⁺] | {p= th | e – base | 2 10 log o | f something positive. | ıg} | | 3 | 3. The | pH scale (in | an aqueo | ous soln | ı) | | | | | | | | | | | BASE | | 4. | We can also le | ook at a solution ir | n terms of [OH ⁻]. | This would be ex | pressed in pOH. | |----|----------------|----------------------|--------------------------------|------------------|-----------------| | | | | | | | 5. Relationship between pH and pOH. a. $$pH + pOH = 14$$ $[H^+][OH^-] = K_W = 1.0x10^{-14}$ Why? Remember, the K_w expression for water: simplify! Take the log of both sides.... $pH + pOH = pK_w$ pН + pOH = total Name 100 Strong Acid 10-2 Moderate Acid Weak Acid NEUTRAL Weak Base -11 Moderate Base 10 -13 10 Strong Base Example #1 $pOH = -log[OH^-]$ Nitric acid, HNO₃, is used in the production of fertilizer, dyes, drugs and explosives. Calculate the pH of a HNO₃ solution having a [H⁺] of 0.76 M. EX2: The OH⁻ ion concentration of a blood sample is 2.5x10⁻⁷ M. What is the pH of the blood? - B. Strength of Acids and Bases. - Strong acids and strong bases IONIZE 100%. $$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl$$ What ARE the "Big Six" strong acids? $NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$ What ARE the strong bases? - ** Ionization of strong acids and bases goes to COMPLETION. What can we say about the K value for these processes? It is for this reason, that we don't show a double arrow in these reactions. So is there such a thing as true HCl in solution? - 2. Most acids and bases are actually WEAK and weak acids and bases only ionize to a limited extent. $$HCOOH + H_2O \Rightarrow COO^- + H_3O^+$$ $$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$ - ** At equilibrium, weak acid or base solutions contain a mixture of reactants and products. When compared to strong acids/bases, the K value for ** So, really, is there such a thing as CH₃COOH in solution??? - a. Acids and Bases and their conjugate partner.... 3. What conclusions you can draw from the above? it's conjugate base. $HCl(aq) + H_2O(l) ----> H_3O^+(aq) + Cl^-$ The stronger the ACID, the - From this info, you can predict the direction of an acid/base reaction by comparing the strength of the acid vs the strength of the base.... - EX 3: Predict whether the equilibrium constant for the following reaction is greater than or smaller than 1: Ka vs Kb (you will need a Ka/Kb table) a) $$CH_3COOH(aq)$$ + $HCOO^-(aq)$ \rightleftharpoons $CH_3COO^-(aq)$ + $HCOOH(aq)$ b) $$HCl(aq)$$ + $F^{-}(aq)$ \rightleftharpoons $HF(aq)$ + $Cl^{-}(aq)$ c) $$NH_3$$ (aq) + HCN (aq) \Rightarrow NH_4^+ (aq) + CN^- (aq) Really, H₃O⁺ is the absolute strongest acid that can exist in an (aq) soln. Strong Acids (like all the "Big Six) ionize 100% in water to make H₃O⁺. Weak acids also make H₃O⁺, they just don't make as much. EX4: Let's say you have a 1 M solution of HCl and a 1 M solution of CH₃COOH. Compare the [H⁺]. $$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-$$ OH is the strongest base that can exist $$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$$ $[H^+] =$ $$[H^{+}] =$$ _____ in an aq solution.