NOTES #51 An Introduction to Acids & Bases

	a	Acid Definition Arrhenium Brønsted	ıs Acids:			when d	issolved i	n water,	increa	ses the	H ⁺ conce	ntration o	of the w	ater.		
*		sted Acid - s				á	a proton.	Γ	1		Conjug	gate Base	: what	s left on	ce the H ⁺	is removed.
		sted Base - s									Conjug	gate Acid	: what	s left on	ce the H ⁺	is added.
EX1	1: (СН ₃ СООН (а	aq)	+	H ₂ O(1)		=		(СН ₃ СС	OO (aq)	+	Н ₃	O ⁺ (aq)		
	НаО	o ⁺ = the hyo	dronium	ion. F	H ⁺ is just	a simpl	ification.	H ₂ O ⁺ a	nd H ⁺	should	l be used	complete	ly inter	changeab	oly!	
EX2	_	NH ₃ (aq)		+	3	H ₂ O		<i>></i>				•	,	Č	,	
	*	* Notice the	e role H ₂	O play	s in this r	eaction.	compar	e to the	exampl	le abov	e					
EX3	3: Iden	tify the follo	wing as a	a Brons	sted acid o	or base	and write	it's resp	ected c	oniuga	ate partne	::				
		CN ⁻	Č			HSO		1		, ,	H ₂ S			С	6 ^H 5 ^{NH} 3	+
		ase propertie er can act eitl			or a BAS	lEas	we saw al	oove. Th	is is re	ferred	to as					
																mall extent:
2	. wan	er is a very _	H	_electi 20 (l)	oryte and	i is, iieii ≠	сс, а	H^{+}	(aq)	+ (OH (aq)	ony. 110v	vevei, i	t does to	mze to a s	illan extent.
OR	what's	really going	on	2 H ₂ O	(1)				;	≐						
		* T	This ioniz	zation c	of water is	s often o	called AU	TOIONI	ZATI(ON.						
		rater only ion						dict K _c t	o be??	? Why	<i>i</i> ?					
	a	. Write out t	the K _c ex	pressio	on for this	reaction	n:]	K _c =						
	b	o. Since only	a small	fraction	n of the w	ater mo	olecules w	ill ionize	e, what	can w	e say abo	ut the [H ₂	₂ O]?			
	c	. K _c · [H ₂ O]] equals	a new I	K, which	we will	call K _w .									
		K _w is the ION I. K _w just lik														
		The concentra														
		e. K _w is 1.0x							**							
		w : * In pure v] are E0	QUAL and	d the wat	ter is sa	aid to b	e NEUTI	RAL. At	25°C,	what are	these con	centrations?
								* If []	H ⁺] > [C	H], there	e is an excess o	f	and	the solution	is	
								* If [H ⁺] < [C	H ⁻], there	e is an excess o	f	and	the solution	is	-
EX:	Calcu	late the conc	entration	of OH	ions in	a HCl s	olution w	hose [H [†]	⁺] is 1.	3 M.						
1 2	2. pH =	I scale. nuse [H ⁺] and the negative as [H ⁺] INCE	e logarith	ım of tl	ne hydrog	en ion o	concentrat	ion.	pН	= - lo	og [H ⁺]	{p= th	e – base	2 10 log o	f something positive.	ıg}
3	3. The	pH scale (in	an aqueo	ous soln	ı)											BASE

4.	We can also le	ook at a solution ir	n terms of [OH ⁻].	This would be ex	pressed in pOH.

5. Relationship between pH and pOH.

a.
$$pH + pOH = 14$$

 $[H^+][OH^-] = K_W = 1.0x10^{-14}$ Why? Remember, the K_w expression for water: simplify! Take the log of both sides.... $pH + pOH = pK_w$

pН + pOH = total Name 100 Strong Acid 10-2 Moderate Acid Weak Acid NEUTRAL Weak Base -11 Moderate Base 10 -13 10 Strong Base

Example #1

 $pOH = -log[OH^-]$

Nitric acid, HNO₃, is used in the production of fertilizer, dyes, drugs and explosives. Calculate

the pH of a HNO₃ solution having a [H⁺] of 0.76 M.

EX2: The OH⁻ ion concentration of a blood sample is 2.5x10⁻⁷ M. What is the pH of the blood?

- B. Strength of Acids and Bases.
 - Strong acids and strong bases IONIZE 100%.

$$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl$$

What ARE the "Big Six" strong acids?

 $NaOH(s) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

What ARE the strong bases?

- ** Ionization of strong acids and bases goes to COMPLETION. What can we say about the K value for these processes? It is for this reason, that we don't show a double arrow in these reactions. So is there such a thing as true HCl in solution?
 - 2. Most acids and bases are actually WEAK and weak acids and bases only ionize to a limited extent.

$$HCOOH + H_2O \Rightarrow COO^- + H_3O^+$$

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

- ** At equilibrium, weak acid or base solutions contain a mixture of reactants and products. When compared to strong acids/bases, the K value for ** So, really, is there such a thing as CH₃COOH in solution???
 - a. Acids and Bases and their conjugate partner.... 3. What conclusions you can draw from the above?

it's conjugate base. $HCl(aq) + H_2O(l) ----> H_3O^+(aq) + Cl^-$ The stronger the ACID, the

- From this info, you can predict the direction of an acid/base reaction by comparing the strength of the acid vs the strength of the base....
- EX 3: Predict whether the equilibrium constant for the following reaction is greater than or smaller than 1: Ka vs Kb (you will need a Ka/Kb table)

a)
$$CH_3COOH(aq)$$
 + $HCOO^-(aq)$ \rightleftharpoons $CH_3COO^-(aq)$ + $HCOOH(aq)$

b)
$$HCl(aq)$$
 + $F^{-}(aq)$ \rightleftharpoons $HF(aq)$ + $Cl^{-}(aq)$

c)
$$NH_3$$
 (aq) + HCN (aq) \Rightarrow NH_4^+ (aq) + CN^- (aq)

Really, H₃O⁺ is the absolute strongest acid that can exist in an (aq) soln. Strong Acids (like all the "Big Six) ionize

100% in water to make H₃O⁺. Weak acids also make H₃O⁺, they just don't make as much.

EX4: Let's say you have a 1 M solution of HCl and a 1 M solution of CH₃COOH. Compare the [H⁺].

$$HCl(aq) + H_2O(l) \rightarrow H_3O^+(aq) + Cl^-$$

OH is the strongest base that can exist

$$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$$
 $[H^+] =$

$$[H^{+}] =$$

in an aq solution.