The ULTIMATE Equilibrium Problem...

Consider the following equation: $NH_4HS(s) \rightarrow NH_3(g) + H_2S(g)$

1. Some solid NH₄HS is placed in an evacuated vessel at 25°C. After Eq. is attained, the total pressure in the system is 0.659 atm. Some solid NH₄HS remains in the vessel at Eq. CALCULATE K_p .

2. Some extra NH_3 (g) is injected into the vessel. When Eq. is reestablished, the partial pressure of NH_3 (g) in the vessel is 2x the partial pressure of H_2S (g). Calculate the P_{NH3} and P_{H2S} .

3. In a *different* experiment, NH_3 and H_2S are introduced into an evacuated 1.00 L vessel at 25°C. The initial pressure of each gas is 0.500 atm. Calculate the partial pressure of NH_3 (g) and H_2S (g) as well as the moles of solid of NH_4HS all present at Eq.

4. Knowing the K_p from above, calculate $\dot{K_p}$ for the following reaction: $2 \text{ NH}_3(g) + 2 \text{ H}_2 S(g) - 2 \text{ NH}_4 \text{HS}(s)$

5. If K_p at 45°C is 0.00108, is this reaction ENDO- or EXO- ???

- 6. Considering the original reaction: $NH_4HS(s) = NH_3(g) + H_2S(g)$
 - Which way would the reaction shift in each case?
 - What would happen to the moles of H_2S ?
 - What would happen to K?

EXPLAIN your answers....use Energy diagrams and symbols as much as possible!

- a. Add more NH₄HS.
- b. Increase the P by decreasing the volume.
- c. Add a catalyst.
- d. While maintaining the same volume, add some Argon.
- e. While maintaining the same pressure, add some Argon.
- f. Decrease the temperature.
- g. Add some HCl.