The ULTIMATE Equilibrium Problem...
Consider the following equation: $\mathbf{N H}_{4} \mathbf{H S}(\mathrm{~s}) \longleftrightarrow \mathbf{N H}_{3}(\mathrm{~g})+\mathbf{H}_{\mathbf{2}} \mathbf{S}(\mathrm{g})$

1. Some solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in an evacuated vessel at $25^{\circ} \mathrm{C}$. After Eq. is attained, the total pressure in the system is 0.659 atm. Some solid $\mathrm{NH}_{4} \mathrm{HS}$ remains in the vessel at Eq. CALCULATE $\mathrm{K}_{\mathrm{p}}$.
2. Some extra $\mathrm{NH}_{3}(\mathrm{~g})$ is injected into the vessel. When Eq. is reestablished, the partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ in the vessel is 2 x the partial pressure of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$. Calculate the $\mathrm{P}_{\mathrm{NH} 3}$ and $\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}$.
3. In a different experiment, $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$ are introduced into an evacuated 1.00 L vessel at $25^{\circ} \mathrm{C}$. The initial pressure of each gas is 0.500 atm . Calculate the partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ as well as the moles of solid of $\mathrm{NH}_{4} \mathrm{HS}$ all present at Eq.
4. Knowing the $\mathrm{K}_{\mathrm{p}}$ from above, calculate $\mathrm{K}_{\mathrm{p}}^{\prime}$ for the following reaction: $\quad 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad 2 \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$
5. If $\mathrm{K}_{\mathrm{p}}$ at $45^{\circ} \mathrm{C}$ is 0.00108 , is this reaction ENDO- or EXO- ???
6. Considering the original reaction: $\quad \mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \quad \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

- Which way would the reaction shift in each case?
- What would happen to the moles of $\mathrm{H}_{2} \mathrm{~S}$ ?
- What would happen to K?

EXPLAIN your answers....use Energy diagrams and symbols as much as possible!
a. Add more $\mathrm{NH}_{4} \mathrm{HS}$.
b. Increase the P by decreasing the volume.
c. Add a catalyst.
d. While maintaining the same volume, add some Argon.
e. While maintaining the same pressure, add some Argon.
f. Decrease the temperature.
g. Add some HCl .

