GASES AP Chemistry

1. Properties of the states of matter: LIQUID GAS Shape/Volume: definite shape and volume definite volume, no definite shape no definite shape or volume Compressibility: only slightly compressible only slightly compressible highly compressible Density: med/high density med/high density low density Movement, speed, close together, only vibrational particles can slide past each other. particles are FAR apart from distance: movement still limited movement each other 2. What factors decide what phase - liquid, gas or solid - something will be? a. ______ - is a measure of the average kinetic energy in a substance. 1. <u>Kinetic Energy</u> - <u>Olpendent</u> on was soud velocity (KE = 1/2 mv²)

* The greater the temperature, the <u>greater</u> the KE (the faster particles are moving) * Any two gases at the same temperature will have the Same ave. KE. ** IF temp was the ONLY factor, EVERYTHING would be in the same phase at room temp.... b. physical purse - are determined by the strength of attractive forces. 1. Solids = particles are held together by Strong attractive forces

2. Liquids = particles are held together by weaker attractive forces

3. Gases = particles are held together by weaker attractive forces 3. Boiling points are an indication of the strength of attractive forces. 1. Measuring Gases:

d. Pressure (P): measured in almospheres.

P.V.n.T.

2. PRESSURE
a. Define as Force per unit zrea.
**b. is created as a result of COLLISIONS of particles/ unit of area.
- Gas particles are in constant random motion. They exert pressure on any surface with which they come in contact with.
3. ATMOSPHERIC PRESSURE a. pressure exerted by Earth's atmosphere. (1) 10 b. "The air is thinner in Denver." Why? What does this mean?
c. Use a brownett to measure atmospheric pressure.
*Standard atmospheric pressure = 760 mmHg = 1 atm = 760 torr = 101,325 Pa =
$101.325 \text{ kPa} = 14.71 \text{ lb/in}^2 = 1.01325 \text{ bar} = 1013.25 \text{ millibar (one pascal} = 1.0 \text{ N/m}^2)$
*** Be sure you can do conversions from one pressure unit to another!!!!
d. DEMO'sillustrations of atmospheric pressure!
4. MANOMETERS
4. MANOMETERS a. A device used to measure the pressures of gases other than the atmospheric.
1. Which vessel contains gas w/P > than atmospheric?
2. Which vessel contains gas w/P < than atmospheric?
3. What would happen in B if the apparatus were carried to the top of a high mountain?
4. Calculate the Pgas in C? Assume Patm = 760

2. PRESSURE

a.	Define as		

**b. is created as a result of COLLISIONS of particles/ unit of area.

- Gas particles are in constant random motion. They exert pressure on any surface with which they come in contact with.

3. ATMOSPHERIC PRESSURE

- a. pressure exerted by Earth's atmosphere.
- b. "The air is thinner in Denver." Why? What does this mean?
- c. Use a ______ to measure atmospheric pressure.

*Standard atmospheric pressure = 760 mmHg = 1 atm = 760 torr = 101,325 Pa = $101.325 \text{ kPa} = 14.71 \text{ lb/in}^2 = 1.01325 \text{ bar} = 1013.25 \text{ millibar (one pascal} = 1.0 \text{ N/m}^2)$ *** Be sure you can do conversions from one pressure unit to another!!!!

d. DEMO's....illustrations of atmospheric pressure!

4. MANOMETERS

a. A device used to measure the pressures of gases other than the atmospheric.

- 1. Which vessel contains gas w/P > than atmospheric?
- 2. Which vessel contains gas w/P < than atmospheric?
- 3. What would happen in B if the apparatus were carried to the top of a high mountain?

4. Calculate the P_{gas} in C? Assume $P_{atm} = 760$

NOTES #36 THE GAS LAWS: Draw Experimental apparatus here!: I. BOYLE'S LAW: The Pressure - Volume Relationship Show piston on lune Synings a. The volume of a given amount of gas at constant temperature is ____in verse 14 proportional to the pressure applied to the gas. In other words, as pressure INCREASES, volume derveases. b. Mathematically, we can write this law two ways: ___ c. Rearranging yields a mathematical statement of Boyle's Law. VP = K (a constant) The product of P x V is a constant for a fixed amount of gas at constant temperature. Take a look . . . Trials #2 #6 #1 #3 #4 P (mmHq) 724 869 951 998 1893 1230 V (liters) 1.50 1.33 1.22 1.16 0.94 0.61 PxV 1090 1160 1160 1200 1200 1100 d. For changes in pressure from P1 to P2, we can apply Boyle's Law. Since the product P x V is a constant, its value at the initial pressure, P1, and its volume, V1, will EQUAL P x V at the final pressure, in the P2, and the final volume, V2. P1V1 = P2V2 when Moles (n) & Temp () are held constant. a. At constant pressure and moles, the volume of a gas is directly proportional to its absolute so temperature in units of ______. b. Mathematically, we can express this as: V(mL) 30 c. Rearranging, we get another form of Charles's Law, 20 $T_2V_1 = T_1V_2$. Since V/T is equal to a constant, then V1/T1 at an initial temperature, T1, 10 and volume, V_1 , will be equal to V_2/T_2 at a final temperature, T2, and volume, V2. -100 0 Temperature °C d. Charles's Law allowed for the prediction of ABSOLUTE ZERO, the temperature at which ALL Molecular Motion stops. Look above! OOK KE = 0 a. At the same temperature and pressure, equal volumes of ANY gas contain the $\frac{Same}{1+tonal}$ to the number of moles present. b. It's been found that a mole of ANY gas at STP (standard temperature and pressure) will occupy a volume of _______ 22.41L_. This is a very useful conversion. If you know the volume of a gas (x), after correcting for the temperature and pressure (STP), the moles can be determined: c. STP = Standard Temperature and Pressure: ______ atm , _x liters = moles 22.41 L/mol

TXY 7 = KY 7, -K + +
IV. GAY-LUSSAC'S LAW: The Temperature – Pressure Relationship $P_1 = \frac{12}{P_2}$
a. As the absolute temperature of a gas is increased its pressure will increase in a manner that is
b. Upon heating, the kinetic energy of the surroundings is transferred the gas in the container. Remember, KE(ave) \propto Temperature, so if T \uparrow , KE \uparrow . If KE \uparrow , then velocity \uparrow , due to KE = 1/2mv 2 . As the molecules travel with greater velocities, they will exert greater collision forces on the inner surface of the container. Since \rightarrow Pressure = Force/Area, $T\uparrow \propto P\uparrow$.
Gas Laws - a molecular level. GMY LUSSAC,
Scenario#1 Temperature - Pressure Relationships [Must keep & constant]
A sample of gas was heated from 25°C to 200°C. 1. What will happen to the pressure exerted by this gas? 2. Explain how each of the following factors does or does not contribute to the pressure change that occurs when the temperature increases. a) Collisions per unit time b) Energy per collision Increase TP Increase
SA N ∈ Scenario #2 Pressure & # of Particles [Must keep & constant]
A container initially holds 1 mole of gas and then 2 additional moles are added. 1. What will happen to the pressure exerted by this gas? 2. Explain how each of the following factors does or does not contribute to the pressure change that occurs when the temperature increases. a) Collisions per unit time b) Energy per collision The same (No a Re)
c) Number of particles per unit volume. pp 1 densite (more)
Scenario # Pressure - Volume Relationships [Must keep & constant]
A sample of gas was initially in a 2 liter container and then the volume was reduced to 1 liter. 1. What will happen to the pressure exerted by this gas? 2. Explain how each of the following factors does or does not contribute to the pressure change that occurs when
a) Collisions per unit time TP b) Energy per collision Same Timp & KG Same timp and Speed, bit 1256 distances c) Number of particles per unit volume. Increases TD

aistorically, the research of three scientists led to the relationships between four variables, P, V, T and n.

R, the proportionality constant

it relates these units together:

 $C = \frac{V}{NT} = \frac{1.00 \text{ M} \cdot 22.42}{1.00 \text{ mol } 275 \text{ K}}$ Rearranging the equation leads us to the familiar ideal gas equation:

BOYLE'S LAW:

CHARLE'S LAW:

We can combine these relationships to make a more general gas law:

AVOGADRO'S LAW:

By holding two variables constant these scientists displayed how the remaining two variables affect each other.

GAS LAWS:

 $V \propto nT/P$

APPLICATIONS:

AS DENSITY AND MOLAR MASS.

THE IDEAL GAS EQUATION, R, AND APPLICATIONS

PV = nRT

V = R(nT/P)

AP CHEM

(constant n, T)

(constant n, P)

(constant P, T)

The values for R are

0.0821 L-atm/mol -K 8.314 J/mol-K

Gry-Lussite
PXT

8.314 KOMSZ/molik

Gas density has the units of mass per unit volume. Rearranging the ideal gas equation leads to a new equation revealing mol/vol.
n/V = P/RT (units are mol/L)
We can multiply both sides of the equation by M , molar mass (the number of grams in 1 mol of substance).
nM/V = PM/RT What are the units for the left side of the equation? That's density! E 314 kg m That's density!
A new equation could be:
d = PM/RT
To find the molar mass if the density is known, simply rearrange the above equation.
M=dRT/P
Ex 1: What is the density of carbon tetrachloride vapor at 714 torr and 125°C?
d= (714 torr)(10tm/760torr)(153.81g/mol) = [4.429]
0.0821 Later/mol K (398K)
Ex 2: Calculate the average molar mass of dry air if it has a density of 1.17 g/L at 21°C and 740.0 torr.
M= (1.17 92)(.0821 Lata/molk)(294K) = 12900/11

(740 torr x 10 to 760 -orr

 $\frac{1}{2} m n^{2} = \frac{3}{2} R T$ $\frac{1}{2} m o l \left(\frac{1}{2}\right) m ass$ $\frac{3}{2} R T \times 2 = \frac{3}{2} R T$ $\frac{3}{2} R T \times 2 = \frac{3}{2} R T$ m o l m ass $m = \sqrt{3} n T$

,

Applications cont.

GAS MIXTURES, PARTIAL PRESSURES and MOLE FRACTIONS

Gas mixtures and partial pressures:

John Dalton (remember him from atomic theory?) observed that the total pressure exerted by a mixture of gases is equal to the sum of the pressures that each gas would exert if it were present alone.

This is referred to as Dalton's Law of Partial Pressures:

$$P_1 = P_1 + P_2 + P_3 + \dots$$

Each of these gases is subject to the gas laws and behaves independently.

So, $P_1 = n_1(RT/V)$. This applies to all of the gases in a mixture. . . . $P_1 = (n_1 + n_2 + n_3 + ...)RT/V$ or

$$P_1 = (n_1 + n_2 + n_3 + ...)RT/V$$
 or $= n_1(RT/V)$

Mole Fractions:

It is then reasonable to assume that a gas behaves as a portion of the whole based on its presence in moles.

$$\frac{P_1}{P_t} = \frac{n_t RT/V}{n_t RT/V} = \frac{n_1}{n_t}$$

 n_1/n_t is called the *mole fraction* of the gas. The symbol X_1 will be used to designate this. The mole fraction is a dimensionless number used to represent a percentage as a decimal.

$$\mathbf{P}_1 = (\mathbf{n}_1/\mathbf{n}_t)\mathbf{P}_t = \mathbf{X}_1\mathbf{P}_t$$

Ex 3: Air is 78% nitrogen gas (the mole fraction of nitrogen is 0.78). If the pressure is 1.00 atm, what is the partial pressure of nitrogen in torr?

Ex 4: When mountain climbing, the thin air soon reveals a lack of oxygen. What is the partial pressure of oxygen at the summit of Mount Everest (mm of Hg) when the total pressure is 338.6 millibars. Assume the oxygen content is 21%.

Poi =
$$\times$$
 or (PT) = $(0.21)(338.6 \text{ millibars.}$ Assume the oxygen content is 21%.

$$(0.21)(338.6 \text{ m/s}) = 53.33$$

$$(0.13.25 \text{ m/s}) = 600 \text{ m/s}$$

Ex 5: What is the partial pressure of oxygen (mm of Hg) at STP? Still assume 21% oxygen.

Por =
$$X_{02}$$
 (PT) = $(0.21)(1.0atm)$ 760mm/ $= 1.0atm$

"IAGRAM FOR COLLECTING GASSES OVER WATER:

2= 0.002 atm x 1 x 10 m x 101325 N/m2 = pascals 8.314 N/m MOIK

7 8.3.4 J

molk

1.00 (22.41) = :082/cmp.

GAS LAWS SUMMARY

Ap Chemistry

1. BOYLE'S LAW

- $P_1V_1 = P_2V_2$
- * when n and T are constant
- As P , V (indirectly proportional)

2. CHARLES'S LAW

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

* when n and P are constant

- As T , V (directly proportional)

3. AVOGADRO'S LAW

- 1 mole of any gas at STP takes up a volume of 22.4 L. n x V (when T+ Pare constant)
- STP = standard temperature and pressure = 1 atm and 273 K or 0°C

4. IDEAL GAS LAW EQUATION (combines Boyle's and Charles's law)

- PV = nRT
- Temperature has to be in Kelvin
- $R = 0.0821 \text{ atm} \cdot L / K \cdot mol$

5. COMBINED GAS LAW

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

* when is constant

- Temperature has to be in Kelvin

6. GAS LAW EXTENSIONS (Incorporating molar mass and density of a gas)

- Density =
$$\frac{\mathbf{m}}{\mathbf{V}} = \frac{\mathbf{P}M}{\mathbf{R}T}$$

- M = molar mass of gas (grams/mol), m = mass of gas (grams)
- Also remember, Dof gas = mass of gas and MM (molar mass of gas) = mass of gas Volume of gas moles of gas

7. GAS STOICH

8. DALTON'S LAW OF PARTIAL PRESSURE

-
$$PTotal = PA + PB + PC + ...$$
 and $Mole Fraction = XA = \frac{C_{1A}}{n_{total}} = \frac{PA}{P_{total}}$

Law Calculations

Use the combined gaslaw

1. A 5.00 L container is filled with N_{2 (e)} to a pressure of 3.00 atm at 250 °C. What would be the resultant volume of a container that is used to store the same gas at STP?

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = \frac{3.00 \text{ atm}(5.00 \text{ E})}{523 \text{ K}} = \frac{1.00 \text{ atm}(V_2)}{273 \text{ K}}$$

. Calculate the volume (in liters) occupied by 7.40 g of CO2 @ STP. Use Aungadro's Law

3. MolarMass/Density Calculations! Eyelopropane is used as a general anesthetic. It has a molar mass of 42.0 grams. What is the density of cyclopropane gas at 25.0 °C and 1.02 atm?

$$d = ?$$

 $T = 25°C \rightarrow 290K$ $V = 1027$
 $P = 1.07 \text{ ATM}$
 $N = 1 \text{ Ymole}$
 $V = ?$
 $V = ?$

4. A compound contains 11.79% C, 69.57% Cl, and 18.64% F

what is the molecular formula?
$$\frac{11.79}{12.01} = .9817 - 1.0 \text{ N}$$

$$\frac{11.11}{12.01} = \frac{7617}{1911} \approx \frac{1}{12.01}$$

A) Find the empirical formula

10.64 g F 35.45 = 1.962 \(\times 2.000 ol \)

10.64 g F \(\frac{18.64}{19.00} = \frac{.9811}{.9811} = 1.0 mol \)

[CC1_2F] \(\frac{18.64}{19.00} = \frac{.9811}{.9811} = 1.0 mol \)

5. What volume of N2 gas at 720 torr and 23 °C is required to react with 7.35 L of H₂ gas at the sar

temperature and pressure? Trick a vestim!

Kinetic Molecular Theory

Ap	Chemistry
----	-----------

i. Kinetic Molecular Theory of Gases:

a. What are the 4 assumptions made by this theory? 1. Volume: gas particles have redigible volume: b/c gases are separate by someth lastance. 2. Motion: Constant pand on motion - collisions and elastic. 3. Attractive forces:
* 4. Kinetic Energy: The average KE of gas particles is proportional to the absolute temperature.
- ANY TWO GASES AT THE SAME TEMPERATURE WILL HAVE THE SAME AVE. KE.
b. Be able to explain each of the gas laws in terms of Kinetic Molecular Theory (refer to pages 181-182).
II. Kinetic Energy: Let's look at equation for KE.
$KE = 1/2 \text{ mv}^2$ or (more accurately) $KE = \frac{1}{2} \text{ mu}^2$
a. $u = \frac{2}{\text{Mean Syone 0}} \frac{5}{\text{Peace}}$ average of the square of the speeds of all the molecules.
** b. KE depends on both the Mass and the autra of particles.
1. Just because the average KE and speed of each molecule is the same at constant T, at any one instant, are all the molecules moving at that speed? Why or why not?? No, breams a firm now one collision -
- We can use a Maxwell speed distribution curve to show the # of gas molecules moving at certain speeds.
** As T includes, molecular speed includes ** As T includes, molecular speed includes ** As T includes molecular speed becomes more variable. Why??? ** As T includes molecular speed becomes more variable. Why???
molecular speed 10.55 ble @ higher speeds
2. Let's say we are talking about TWO gases at the same temperature. Because they are at the same T, they should have the
same are K. enry but do their molecules travel at the same average speed?? Why or why not??? No KE depends on both molecules travel at the same average speed?? Why or why not??? Molecule 15 going to move Stones: (IF masses Are Different) ** Thinking back to the diffusion demo, which gas, NH3 or HCl had molecules moving faster???
III. <u>Determining the speed of gas particles</u> : We can quantitatively estimate the speed of particles by calculating an average molecular speed or a root-mean-square (rms) speed (urms).
a. How do we derive urms?? Equalize and manipulate the following two equations: (refer to pg 183-184) KE per molecule = 1/2 mu ² KE per molecule = 3/2 RT mole (kg/ml) R = 93145 M = molar Mars (kg/ml) M is in the standard of the stan

OR 15 = Kgm2 52 17M=101325 N2	R=0,000	li atm L	x 1 × 10 m	101325 N/1012	9.3/4
or 13 = kg m	1: n		14	X latin	
TM = 101325 N2	(PA)				- 0314
b. You wa	nt u _{rms} in m/s. In order t	o do this R has to be in	units of J/mol·K an	d molar mass has to be in	units of . w
kg	g/mol. R	k = 8.314 J/mol·K	(derivation in Apper	dix 2 of book)	
. 17	= 1Kam²	* ,	ε• £		
1.3	= Ikgm²			21 46.	
av Comm	ore greentitutivals the reat of		17.655/mol	× 182 36.46.	in oil
eg. Compa	are qualitizatively the root-i	nean-square speeds (in	m/s) of NH3 and HC	i gas molecules at 25 C.	to a second
NH3: Mcms = T	3/21 = V 30	9.5143 , 278	(b). = (661 = 660	18 -D
11-0 Vani	Com Civi	. (205	1100	001	
660 / gm2 =	660 - 1726	13/2 = 3(8)	0.03641 49	78) ~ 450 ±	
IV. Gas Diffusion	on: Refers to the gradual r	nixing of gas molecules	. Diffusion always pr	oceeds from a region of	high
concentration to a re	egion of 10 W co	ncentration. Looking	at the molecular spee	ds from above, one would	expect
molecules to mix q	uickly. However, this in 1	NOT the casewhy?			1
(1)	nstant sandar	n unstron 4	intriference	e wait will	luits
a. The rela	ative rates of diffusion can	be calculated by compa	ing u _{rms} values:		
. R	ate of Diffusion for gas 1 ate of Diffusion for gas 2	= TA, - VM	2Simplify!	JMZ	45
(2 R	ate of Diffusion for gas 2	THE TA	ñ, (2	(M)	*
b. This is	called Graham	islaw	8	8 9	
the diffusion rate o	f O2 is found to be 30.50 r	nL/min. If the choices	are CHA, CO, NO, at	nder identical experimental and CO2, what is the identity	y of the
unknown gas?	X = 1M 02.	. 31,50 ml	1 min	5328/mol	
T	On The		, = _	0,	é
(vi	1 The more	30 50 000	./n.a ?	1 W1	ye 🙀 ni
VM = 3:50 -4/1	me/min	5.6 -5	48 JM1 =	30 000 plust.	=NC
** Wish of	a diffusion the shows sale	whatian is substantial	tion December of all t	74.463	notical rates of

With the diffusion, the above calculation is only a prediction. Because of all the collisions with air, the actual rates of diffusion are much more complex to determine.

V. Gas Effusion: refers to the passage of a gas through a tiny hole in an evacuated chamber. The same relationship to molar mass applies as above.

** Unlike diffusion, determination of the rates of effusion are much more precise as this transfer of gas occurs in a vacuum where there are no air molecules to interfere.

EX: Calculate the ratio of the effusion rates of hydrogen gas and uranium hexafluoride (UF6), a gas used in the enrichment process to produce fuel for nuclear reactors. (M of UF6 is 352.02 g/mol)

notes #39

Deviations from Ideal BehaviorAp Chemistry

A. What is IDEAL gas behavior	? Think of assumptions from KMT	
negligible volu	me constant, rundom collisions,	cix tens.
Most real gases behave "ideal	ly" but not under ALL conditions. Under what conditions would	gases most
likely exhibit NON-IDEAL BEH	AVIOR???	f : f
	Lose E. Slow bown, closurtagether, attra	Diane or con
2. High Propose	included inhactions, more coelesions,	Significan
B. Dutch physicist, J.D. van de	er Waal, designed a new PV=nRT equation which takes into acco	unt non-ideal
beliavior.	$(P + an^{2}/V^{2}) (V - nb) = nRT$ $P V = nRT$	
- How does this "van de	er Waal's" Eq correct for non-ideal behavior?	mes particle
1 DDHCCHRHCHRR	Heading forces pull on yes particles its	11 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-hard acsold	be projet in w/ a reclasion w/ The en	itaner.
factor!!	pressure to what it should be ideally, use the an ² /V ² correction	Gas a He 0.034
a = measure of	Attactive Fire ; experimentally determined.	H ₂ 0.244 N ₂ 1.39
* The l	ower the "a" value, the the attractive forces.	H ₂ O 5.46
$n^2/V^2 = related$	to Concenter	with
concer	ntration. The more particles per volume, the greater the likely hoo ul collisions.	d for 1855
2. VOLUME CORRE volume. We must n	CTION: V represents volume of container! Gas particles DO have ninus off the actual volume of gas particles to get true volume of c	e a finite ontainer.
Use volume correct	ion factor, (V - nb)	
$n = \underline{\qquad} A$	that is unique for every gas; it is proportional to	1145
The mo	ore massive, usually, the the volume.	(4mol)
r t	and the second s	Gas b
§ At		He 0.024 No 0.040
		N ₂ 0.040 CCl ₄ 0.138

~		10 a - 10
1'	Dent	olems
·	LIUI	1161115

Which	h of the following would	deviate the M	IOST from ideal	gas behavior? Ex	xplain your reason	ning.
(a.	D2 at 0°C and 5 atm He at 0°C and 5 atm O2 at 400°C and 1 atm He at 400°C and 1 atm	(@ Jay	elenge th	righ pressure	Clear gasto	n redel
b	. He at 0°C and 5 atm	>-110Mc n	ubst Carters	chise to race	KINEIN)	1.02 is-
	0-24000	SANCTON C. LINES	0z >	He (mass)	bfactor	(from
C.	. Oz at 400 C and 1 atm	Read	i, and are 16		. 1	A. C
d	l. He at 400°C and 1 atn		William St. 1	i, Temp	ese have b	re i socy
1 116 11	noial volume of isobenu	me, C5m12, 1	S I.U L at JUJ N	and Joio aun.		
a b	Does Isopentane behave. Given that $a = 17.0 \frac{1}{V}$	ve as an ideal	gas? V 0 '.	(high Y)	e of isopentane a	s predicted
	by the van der W_1	al's equation	and compare it	to P predicted by F	PV=nRT.	7
1						1
) .	P = 30.0 aton 1	er pleasure	taken dete	iminea)		((,
					3	-(0
2140	Mal PV=n (P+0	217	1/210/5	-1-5-7		exper
	(++0	~ / / /	(A 1.D) -	m D. im.		ulas
		ی ن		2	790 V 2 2	· ·
1,3	10 PT =	Jami))(0.092	1 utral/vi	olk / 503	K)
	V		Markey and replicable by the control of the second	11 70	and the second section of the section of the second section of the section of the second section of the sectio	
	a series of the series of	· ^ —	# %	()	1: 6	
	D= 4129	ASLM	<u> 413</u>	ATh Conce	entiones,	
						1 3+H
		m ± m manur [©] T		No. of the last of		
Ų.	: NET			λ.		
	V-Nbj	V				
					gegen des	
	([mol)	09214	mk/wyolx)	(503 K)	Datin	· L ()
3			1. 00/1/12	14)	bv-	
ઇ ાપ		1 L ([well (1)	6E (. (1 1 2
		47.B	- 17.0 =	, g	,	
	- 3	44-1-16	6 - 17	= 30,	in alm	= 30.8
					1	ation!

For those who dare to enter the two chambers!

- 1. Consider the apparatus below. When the stopcock (valve) is opened between the two chambers and the gases are allowed to mix:
 - A) What is the resulting pressure in the vessel?
 - B) What is the mole fraction of the resulting gas mixture?
 - C) What is the partial pressure of the N₂ gas in mmHg?
 - D) If we inject 5.0 moles of an unknown inert gas. What is the resulting partial pressure of N₂ in bars? (of course the temperature didn't change).

2. What is meant by the term *free mean path*? A given amount of ideal gas is placed in a piston and subjected to the following changes (restrictions are noted). How is fmp affected by the following scenarios?

- A) Increase density
- B) Increase temperature at constant volume
- C) Increase pressure at constant temperature
- D) Increase volume at constant temperature
- E) Size of the atoms

	in hose whodane;
(1) PUENRT	
N= PV	= 1.0 Atm(2.0L) = .082
	= 1.0 atm(2.0L) .0821 Latm 288K = .082 molk N2
No2 = PV	= 2.0 atn(8.06) .0821 Latin (298K) = .25 mol 6
127	· 0821 Latin (298K) - mol
	8_
nt =.08	2 + . 25 = . 33 m.l
3) XN2 = :0	83 = .25
X02 = -2	33 = .76
Doont. VT =	53. oxygen difluoride 53. oxygen difluoride 54. potassium thiocyanate
T=	53. oxygen difluoride
n=	25, Iron (11) pnospnate
	0,000 10,000 13
Duentet	Write the correct formula for the following:
Pu=nat P=n	49. Sn ₂ (PO ₄) ₂

moles V .33(.082/cataland +) 298K 5.06 (1.62+ Name the following:

48. Br2O7

47. Cu3N2

) = PN2	PT (XNL	
Ity/1.0 atm) = 300 mm It) (.6(.25)(760n	(C)
60mmly 1.013256.	300 mm Hg 1.0	<u>6</u>)
D bars	CQ.4	
53. iron (III) nitrate 54. sodium cyanide	· _	
52. sulfur trioxide	_	
51. silver sulfide	_	
50. Ca ₃ N ₂ Write the correct formula for the following:		
49. Sn ₃ (PO ₄) ₂		
48. Cl ₂ O ₇		q
HaN . Th		

Name the following:

- (1) what is the resultant pressure when the value is open? (assume no temperature so
- (2) what is pressure if the Leverp increased to 110°C?
- (3) what is the mole fraction of Ar gas in the Resultant mixture?

(PROBicon on Back

13mmHg (latin 760mmHz) 2.00L) = 0.0664 0.0821 Latin K (344K) = n

MHe = 1410 mmty (latin 760 mmty) (7.13L) = 0.46B 0.0821 Latin/mill (344K)

PTotal = Ntotal RT = 0.534 (.0821)(344) Vcombined 9.13

P= (1.65 atm)

2 .534 (UEZI) 383 = \1.83 atm]

(3) nor + nue = n+

nxr = Xxr - 0.124 n+ = Xxr = 0.124

2004 AP® CHEMISTRY FREE-RESPONSE QUESTIONS (Form B)

Answer EITHER Question 2 below OR Question 3 printed on page 8. Only one of these two questions will be graded. If you start both questions, be sure to cross out the question you do not want graded. The Section II score weighting for the question you choose is 20 percent.

- 2. Answer the following questions related to hydrocarbons.
 - (a) Determine the empirical formula of a hydrocarbon that contains 85.7 percent carbon by mass.
 - (b) The density of the hydrocarbon in part (a) is 2.0 g L⁻¹ at 50°C and 0.948 atm.
 - (i) Calculate the molar mass of the hydrocarbon.
 - (ii) Determine the molecular formula of the hydrocarbon.
 - (c) Two flasks are connected by a stopcock as shown below. The 5.0 L flask contains CH₄ at a pressure of 3.0 atm, and the 1.0 L flask contains C₂H₆ at a pressure of 0.55 atm. Calculate the total pressure of the system after the stopcock is opened. Assume that the temperature remains constant.

(d) Octane, C₈H₁₈(*l*), has a density of 0.703 g mL⁻¹ at 20°C. A 255 mL sample of C₈H₁₈(*l*) measured at 20°C reacts completely with excess oxygen as represented by the equation below.

$$2 C_8 H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$$

Calculate the total number of moles of gaseous products formed.

Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 on the next page. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

- 5. A student performs an experiment to determine the molar mass of an unknown gas. A small amount of the pure gas is released from a pressurized container and collected in a graduated tube over water at room temperature, as shown in the diagram above. The collection tube containing the gas is allowed to stand for several minutes, and its depth is adjusted until the water levels inside and outside the tube are the same. Assume that:
 - · the gas is not appreciably soluble in water
 - the gas collected in the graduated tube and the water are in thermal equilibrium
 - a barometer, a thermometer, an analytical balance, and a table of the equilibrium vapor pressure of water at various temperatures are also available.
 - (a) Write the equation(s) needed to calculate the molar mass of the gas.
 - (b) List the measurements that must be made in order to calculate the molar mass of the gas.
 - (c) Explain the purpose of equalizing the water levels inside and outside the gas collection tube.
 - (d) The student determines the molar mass of the gas to be 64 g mol⁻¹. Write the expression (set-up) for calculating the percent error in the experimental value, assuming that the unknown gas is butane (molar mass 58 g mol⁻¹). Calculations are not required.
 - (e) If the student fails to use information from the table of the equilibrium vapor pressures of water in the calculation, the calculated value for the molar mass of the unknown gas will be smaller than the actual value. Explain.

GO ON TO THE NEXT PAGE

2004 FREE RESPONSE QUESTION #2 (2) hydrocarbans contain came H only hence hydrocarbons. 85.786 = 7.14 mol C = 1 C (CH2) A) 12.018 /mil = 14.16 mol H 14.39 14 = 1.98~Z.OH 1.01gH/mil 7.14 M = MRT VP (B) Density = m = PM (i) M = 2.0g (0.0021 cator/molk) (323K) = [55.95 g mol 1.0L (0.948atm) (ii) 12.01 55.95 = 3.96 n 4 C4 H8 14.03 Pizkany temp. Itworts 3.0 MING = 3.0 MIN (5.0L) = 0.669 mol. (273k) = 0.669 mol. N- PY N- PV N C2H6 = 0.55 atm (1.00) = 0.0245 mol 1 Total = 0.6935 Tot = 6.0 L P = MRT PtoT = 0.6935 (0.0021)(273) =12.59 atn / 0) 0.703 g x 255 m L = 179.265 g C8 H 18 x Im. 1 C8 H 18 - 1.57 was g/no orbes wol Nowas mol (8 His x 3 Llmol gas = [Was mol gas 2 mol octone

Scoring Guidelines for Free-Response Question 5

Question 5 (8 points)

(a)
$$PV = nRT$$
 AND $n = \frac{m}{M}$, OR $molar mass = \frac{mRT}{PV}$, OR $M = \frac{DRT}{P}$

(b) temperature, atmospheric pressure, volume of the gas, and mass of gas (mass of pressurized container before and after releasing the gas)

Note: 1 point earned for any two of the above, 2 points earned for any three of them. "The mass of the gas" is acceptable as a "measurement" for the 1st or 2nd point. Extraneous measurements (e.g., density, volume of liquid, etc.) are ignored. To earn 3rd point, "mass of pressurized container before and after releasing the gas", or "change in mass of container" must be indicated.

(c) to equalize internal pressure with room pressure (atmospheric pressure), or the pressure(s) 1 pt will be the same.

(d) % error =
$$\frac{(64-58) g}{58 g} \times 100 \%$$
 (or $\frac{6}{58} \times 100\%$, or $\frac{6}{58}$)

Note: No points earned for generic response (e.g., $\frac{|(\text{expt.-theor.})|}{\text{theor.}} \times 100$), or for $\frac{6}{64} \times 100\%$. No penalty if "× 100%" is absent or if value (10%) is not calculated.

- (e) Pressure will be larger, therefore number of moles will be larger 1 pt molar mass = $\frac{\text{mass}}{\text{moles}}$, therefore calculated molar mass will be smaller 1 pt
- OR, $M = \frac{mRT}{PV}$ (or $M = \frac{DRT}{P}$), and the denominator, PV, will be too large. 2 pts

 Therefore, the value of the molar mass (= $\frac{mRT}{PV}$ or $\frac{DRT}{P}$) will be too small.
- OR, The pressure is larger, or the number of moles is larger, or since $P_{total} = (P_{unknown} P_{water})$ we know that $P_{total} > P_{unknown}$.

 Note: If $n = \frac{m}{M}$ is missing in part (a) but present in part (e), 1 point is earned for part (a).

Class Period: A LC

Answers for which the appropriate work is not shown will receive no credit.

1. Methane can be used in the production of acetylene, according to the equation:

 $2 \text{ CH}_4 (g) \rightarrow C_2 H_2 (g) + 3 H_2 (g)$

A 50.0-L steel vessel, filled with CH4 to a pressure of 10.0 atm at 25°C. is heated to 1600 K to crack CH4 and produce C_2H_2 . a. Find the mass of C_2H_2 that can be produced. $Pv = v_1 v_2 T$

b. Find the pressure of the reactor at 1600 K after the reaction is complete.

2 volumes of (Hy -> 4 volumes of products.

 $\frac{2600 \text{ GeV}}{2600 \text{ GeV}} \rightarrow \text{ Toolounds of Models}.$ $P = \frac{10.9}{2600 \text{ GeV}}$ $P = \frac{40.9(.0821)1600}{50.01} = 107$

2. Benzaldehyde is a fragrant molecule used in artificial cherry flavoring. Combustion of 125 mg of benzaldehyde gives 363 mg of carbon dioxide and 63.7 mg of water. In another experiment, a 110-mg sample is vaporized at 150°C in a 0.100-L bulb. The vapor produces a pressure of 274 torr. Determine the molecular formula of benzaldehyde.

363 y Co2 x ImolCo2 x ImolCo x 12.01gC x 1000m3 = 99.1 mg C 79.28 = 6.6 mol C. 1001 Hz 0 2 mol Hz 0 1 mo

 $\frac{19.126}{12.0114} = 6.6 \text{ mol } (...)$ $\frac{15.126}{16.00} = .95 \text{ mol } 0$ $\frac{70.14}{10.00} = .95 \text{ mol } 0$ $\frac{100.00}{10.00} = .95 \text{ mol } 0$

HCl, 21.3 mg of H₂ was produced. Find the percentage by mass composition of the bronze. HCl will neach w/ Zn, not Cu (Activity Senies)

.0213gHz x 1moltz x 1mol Zn x 65,36,2n = .689 g Zn

·669 × 100 € 12.0 1/. 20 _ 5:73 5:04 × 100 = 88.0 1/. Ca

4. Calculate the molarities of all ions present in a solution made by mixing 150.0 mL of 2.00 x 10-2 M $Ba(OH)_2$ solution with 100.0 mL of 5.00 x 10^{-2} M HCl solution.

.150L x 1 0200 mol Ba(OH) = , 00300 mol Ba(OH)2

Ba(OH), + 2Hel -> Ballz + 2Hz

1100L X , 0500moltel = ,005 moltel

1-00600moloH - .250L = [Ba2+] = .012

.2502 - (.020 = [CI])

5. Cinnabar is an ore of mercury known to contain only Hg and S. When a 0.350-g sample is heated in oxygen, the ore decomposes completely, giving 0.302 g of pure Hg metal. Find the empirical formula of cinnabar. = -00151 molltg 350 .302 046

ΔH = -890.4 kJ/mol Clty Calculate how many grams of water are produced if enough CH₄ is oxidized to release 4452 kJ.

7. Gases are sold and shipped in metal tanks under high pressure. A typical tank of compressed air has a volume of 30.0 L and is pressurized to 15.0 atm at 298 K. What work had to be done in filling this tank? [Hint: what volume did the air occupy before it was compressed?]

$$W = 15.0 \text{ atm} (DV)$$

$$W = -15.0 \text{ atm} (-420L) \underbrace{101.3J}_{1Lah} + \underbrace{1KJ}_{100J} + \underbrace{638KJ}_{NRT} = \underbrace{PV}_{NRT} = \underbrace{PV}_{NRT}$$

$$Compression is \bigoplus \underbrace{P_1V_1}_{V_1} = \underbrace{P_2V_2}_{V_2} = \underbrace{459}_{MRT}$$
8-9. A home swimming pool contains 155 m³ of water. At the beginning of swimming season, the water P1 must be heated from 20.0°C to 30.0°C.

- must be heated from 20.0°C to 30.0°C.
- a. Find the number of joules of heat energy that must be supplied.

$$\Delta H = MSDT$$

$$\Delta H = 155 m^3 \times 1 \times 10^6 cm^3 \times \frac{19}{10m^3} \times \frac{19}{10m^3} \times \frac{19}{10m^3} \times \frac{19}{100} \times \frac{1000^2}{1000} = 6.49 \times 10^9 J$$
or 6,490,000,7

b. If this energy is supplied by a natural gas heater with an 80% heat transfer efficiency, hwo many grams of methane must be burned? [The heat of combustion of methane is -803 kJ/mol]

10-11. Use redox techniques to balance the following equations:

a. AlH₄ + H₂CO
$$\Rightarrow$$
 Al³⁺ + CH₃OH (basic medium)

b. Se + Cr(OH)₃ \Rightarrow Cr + SeO₃²⁻ (basic)

2H + H₂CO \Rightarrow CH₃OH) \Rightarrow GH + H₂CO \Rightarrow CH₃OH) \Rightarrow Cr + SeO₃ + GH + Cr(OH)₃ \Rightarrow Cr + SeO₃ + GH +

[AINy + 4120 + 4120 - 7. A13+ + 40+ 1404 | 35e + 121+ + 4cr(oH) -> 3503 + 181+

1 6017+35c +4Cr(OH)3 -> 35e03 +9 Hz

17-19. These questions are part of a question that was on a previous AP test.

$$C_6H_5OH(s) + 7 O_2(g) \rightarrow 6 CO_2(g) + 3 H_2O(l)$$

When a 2.000-g sample of pure phenol (C6H5OH) is completely burned according to the above equation, 64.98 kilojoules of heat is released. Use the information in the table below to answer the questions that follow:

Substance	(ΔH_f°) at 25°C (kJ/mol)	
C (graphite)	0.00	
CO₂(g)	-393.5	
$H_2(g)$	0.00	
H₂O(I)	-285.85	
O ₂ (g)	0.00	
$C_6H_5OH(s)$?	

c. If the volume of the combustion container is 10.0 L, calculate the final pressure in the container when the temperature is changed to 110.0°C. (Assume no oxygen remains unreacted and that all products are gaseous.)

The volume of the combustion container is 10.0 L, calculate the final pressure in the container when the imperature is changed to 110.0°C. (Assume no oxygen remains unreacted and that all products are gaseous.)

$$PV = NPT \qquad P = \frac{NP}{V} \qquad N = 2.000 \text{ phenol} \times \frac{1000 \text{ phenol}}{2000 \text{ phenol}} \times \frac{1000 \text{ phenol}}{2000 \text{ phenol}} = 0.212 \text{ phenol}$$

$$P = \frac{1912(0821)383}{V} = \frac{10.601 \text{ atm}}{2000 \text{ phenol}} \times \frac{1000 \text{ phenol}}{2000 \text{ phenol}} \times \frac{1000 \text{ phenol}}{2000 \text{ phenol}} = 0.000 \text{ phenol}$$

Oxygen is collected over water at 25°C in a

20. Oxygen is collected over water at 25°C in a 2.00 L vessel at a total barometric pressure of 765 torr. Calculate the number of moles of oxygen collected. The vapor pressure of water at 25°C is 24 torr.

of gas of gas