1. BOYLE'S LAW

- P1V1 = P2V2
- As P $\uparrow, \mathrm{V} \downarrow$
* when n and T are constant (indirecttly proportional)

2. CHARLES'S LAW
$-\frac{\mathrm{V} 1}{\mathbf{T} 1}=\frac{\mathrm{V} 2}{\mathbf{T} 2} \quad *$ when n and P are constant

- As $\mathrm{T} \uparrow, \mathrm{V} \uparrow$ (directly proportional)
- Temperature ALWAYS has to be in Kelvin!! $\quad T(K)=T(\cdot C)+273$

3. AVOGADRO'S LAW

- 1 mole of any gas at STP takes up a volume of $\mathbf{2 2 . 4} \mathbf{L}$. [$n \propto \mathrm{~V}$ (when T and P are constant)]
- $\mathrm{STP}=$ standard temperature and pressure $=1 \mathrm{~atm}$ and 273 K or $0 \cdot \mathrm{C}$

4. IDEAL GAS LAW EQUATION (combines Boyle's and Charles's law)

- $\mathbf{P V}=\mathbf{n R T}$
- Temperature has to be in Kelvin
- $\mathrm{R}=0.0821 \mathrm{~atm} . \mathrm{L} / \mathrm{K} . \mathrm{mol}$

5. COMBINED GAS LAW

$-\frac{\text { P1V1 }}{\mathbf{T 1}}=\frac{\text { P2V2 }}{\mathbf{T 2}} \quad$ [when n is constant]

- Temperature has to be in Kelvin

6. GAS LAW EXTENSIONS (Incorporating molar mass and density of a gas)

- Density $=\frac{\mathbf{m}}{\mathbf{V}}=\frac{\mathbf{P} M}{\mathbf{R T}}$
- $\boldsymbol{M}=$ molar mass of gas (grams $/ \mathrm{mol}$), $\mathrm{m}=$ mass of gas (grams)
- Also remember, D of gas $=\underline{\text { mass of gas }}$ and $\quad \mathrm{MM}($ molar mass of gas $)=$ mass of gas Volume of gas moles of gas

7. GAS STOICH

moles of
given

$\div \mathrm{MM}$	$\div 22.4 \mathrm{~L} @ \mathrm{STP}$
grams of given	volume of given

moles of unknown \swarrow X MM	X22.4 L @ STP
grams	
unknown	volume
unknown	

8. DALTON'S LAW OF PARTIAL PRESSURE

$-\mathbf{P}_{\text {Total }}=\mathbf{P}_{\mathrm{A}}+\mathbf{P}_{\mathbf{B}}+\mathbf{P}_{\mathbf{C}}+\mathbf{P}_{\mathbf{n}} \quad$ and $\quad \underset{\text { (of gas A) }}{\text { Mole Fraction }}=\mathbf{X}_{\mathbf{A}}=\underset{\text { ntotal }}{\underline{\mathbf{n A}}}=\frac{\mathbf{P A}}{\text { Ptotal }}$

