GAS LAWS SUMMARY AP Chemistry SUMMARY #1

1. BOYLE'S LAW

- P1V1 = P2V2

- As $P \uparrow$, $V \downarrow$

* when n and T are constant (indirecttly proportional)

2. CHARLES'S LAW

- $\frac{\mathbf{V1}}{\mathbf{T1}} = \frac{\mathbf{V2}}{\mathbf{T2}}$
- * when n and P are constant

V | |------

- As T \uparrow , V \uparrow (directly proportional)
- Temperature ALWAYS has to be in Kelvin!! $T(K) = T(\bullet C) + 273$

3. AVOGADRO'S LAW

- 1 mole of *any* gas at STP takes up a volume of **22.4** L. [n∝V (when T and P are constant)]
- STP = standard temperature and pressure = 1 atm and 273 K or 0•C

4. IDEAL GAS LAW EQUATION (combines Boyle's and Charles's law)

- PV = nRT
- Temperature has to be in Kelvin
- R = 0.0821 atm.L/ K.mol

5. COMBINED GAS LAW

[when n is constant]

- Temperature has to be in Kelvin

moles of

6. GAS LAW EXTENSIONS (Incorporating molar mass and density of a gas)

- Density = $\frac{\mathbf{m}}{\mathbf{V}} = \frac{\mathbf{P} M}{\mathbf{R} \mathbf{T}}$
- M = molar mass of gas (grams/mol), m = mass of gas (grams)
- Also remember, D of gas = <u>mass of gas</u> and Volume of gas

MM (molar mass of gas) = $\frac{\text{mass of gas}}{\text{moles of gas}}$

7. GAS STOICH

given

÷ MM ÷ 22.4 L @ STP

grams volume
of given of given

moles of
unknown

X MM X 22.4 L @ STP

grams volume

8. DALTON'S LAW OF PARTIAL PRESSURE

$$- P_{Total} = P_A + P_B + P_C + P_n$$

and

unknown

Mole Fraction =
$$X_A = \underline{nA} = \underline{PA}$$

(of gas A) ntotal Ptotal

unknown