2014 STOICH/RXNS/EMPIRICAL FORMULA REVIEW PRACTICE TEST

1. When the following equation is balanced, what are the appropriate coefficients in the equation?
2. The molecular weight of subgrosse ($C_8H_{10}N_4O_2$), caffeine is amu. $B(12.01) + 10(1.01) + 4(14.01) = 194.22 amn + 2(16.00)$ 3. When the following equation is balanced, the coefficients are
$\frac{4}{9}$ NH ₃ (g) + $\frac{7}{9}$ O ₂ (g) $\rightarrow \frac{4}{9}$ NO ₂ (g) + $\frac{6}{9}$ H ₂ O(g)
4. Which one(s) of the following do(es) <i>not</i> occur as diatomic molecules in elemental form?
Sulfur, nitrogen, hydrogen, bromine, oxygen iron, carbon
5. In a chemical reaction the limiting reagent will be the substance that is used up, Causing The vxn to stop.
6. In addition to atoms, the only quantity conserved (is equal on both sides of an equation) in every chemical reaction is
7. The in a balanced equation reveals the mole ratios of the substances involved. Coefficients.
8. In using balanced equations to solve mass-mass problems, the mass of each reactant is first converted to woles
9. What is the volume of a mole of a gas at standard temperature and pressure (STP)?
10. In mass-mass problems, the steps to follow are best summarized as going from mass to moles to moles of another reagent, to mass of 11. The excess reactant in a completed chemical reaction will be the substance That is left over after the reaction, or in except.
Balance the DANG EQUATION (S+1)
13. Considering the following balanced equation:
$CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$
If 2.45 moles of CaC ₂ are added to water, how many liters of C ₂ H ₂ will form at STP?

2.45 mol CaCz x mol CaCz x mol CzHz x 22.46L = 0.357

64.10g CaCz mol CaCz Imol CaCz CzHz

CzHz

Questions 14 & 15 will refer to the following unbalanced equation.

$$\frac{\mathcal{L}}{U} C_5 H_{12}(g) + \frac{16}{9} O_2(g) \rightarrow \frac{10}{5} CO_2(g) + \frac{12}{9} H_2O(g)$$
14. If 32.15 grams of $C_5 H_{12}$ were burned with unlimited O_2 , how many moles of H_2O would form?

15. If 65.7 L of O2 were burned with excess C₅H₁₂, how many grams of CO2 would form?

Questions 16 & 17 will be based on the following balanced equation:

 $\frac{2}{2} C_2 H_6(g) + \frac{7}{2} O_2(g) \rightarrow \frac{4}{2} CO_2(g) + \frac{6}{2} H_2 O(l)$

$$\frac{2}{2} C_{2}H_{6}(g) + \frac{7}{2} O_{2}(g) \rightarrow \frac{4}{2} CO_{2}(g) + \frac{6}{6} H_{2}O(1)$$
16. If 12.06 grams of $C_{2}H_{6}$ were burned with 96.5 grams of O_{2} .

What is the limiting reagent?

12.06 g $C_{2}H_{6} \times |m_{0}| C_{2}H_{6} \times |m_{0}| CO_{2} = \frac{8019}{30.08g} C_{2}H_{6} \times |m_{0}| C_{2}H_{6} \times |m$

17. How many molecules of CO₂ will be formed when the reaction in question 16 takes place?

How many molecules of
$$CO_2$$
 will be formed when the reaction in question 16 takes place?

$$0.8019 \text{ mol } Co_2 \times 6.02 \times 10^{23} \text{ molecules} = 4.83 \times 10 \text{ molecules}$$

$$= 4.83 \times 10 \text{ molecules}$$

$$= 6.02 \times 10^{23} \text{ molecules}$$

18. The following percentages are based on mass. The chemical aspirin, acetylsalicylic acid, contains 59.99% Carbon, 4.48% Hydrogen, and 35.52% Oxygen. A) What is the empirical formula of this compound?

$$59.99 \times \frac{|molC|}{12.0lgC} = 4.995 \quad molC| = 2.25C$$

$$4.489 \times \frac{|molH|}{1.0lgH} = \frac{4.44 \quad molH}{2.22} = 2 molH$$

$$35.529 \times \frac{|molO|}{16.0090} = 2.22 molO| = 10$$

B) If the molar mass of this compound is 180.17 g/mol, what is the molecular formula?

19. What is the percent composition of the elements in iron(III)oxalate, $Fe_2(C_2O_4)_3$?

Reaction families and Descriptive Chemistry

For questions 20-27, first predict the products and then balance the equation.

20. Solid calcium metal is strongly heated in oxygen gas.

2 (acs) + 02(9) => 2 (a0(5)

- 21. What reaction family is taking place in question 20? _____ Synthes is combination.
- 22. An aqueous solution of potassium peroxide (O22-) is decomposed.

2 K202 -> 2 K20 + 02(9)

- 23. What reaction family is taking place in question 22? De composition.
- 24. A piece of solid magnesium metal is placed in a beaker of aqueous hydrochloric acid.

Mg + 2 HC1 (a4) -> Mg C12 (44) + H2 (9)

- 25. What reaction family is taking place in question 24? Single replacement.
- 26. Liquid nonane (C_9H_{20}) is burned in the presence of oxygen gas.

C9H20(1) +1402(9) => 9CO2(9) + 10H2O(9)

27. What reaction family is taking place in question 26? ______ Comboston .