NOTES#20/Quantum Theory#2/ AP CHEMISTRY

I. Em	ission Spectra	ectra - when		There are two types: wavelengths of visible light are represented.				
	Ex of con	tinuous spectr	a:	wavele	ingens of visible	e light die represe	riced.	
٠	*b. Line Spectra - - All elen	when only spected a ur	cific waveleng nique emission	ths are emitted spectrum (like	l. e a fingerprint)			
	- Ex of lin	Hydrogen						
٧	l	В	G	Υ	0	R	_	
	- What's	going on in an	emission spec	tra anyway?				
	- Flame tests - th visible region. (\	e unique color Ve don't have	observed resu a way of sepai	ilts from the co	embination of telengths when	the colors emitted doing flame tests)	in the	
	*** So, why is it t	hat different e	elements produ	uce different er	mission spectra	?		
II. Bol	nr's Model and the	Hydrogen Em	ission Spectra:					
	- According to B levels. Energy le				could be locat	ed only in certain	energy	
	- As you go farth	ner away from	the nucleus, t	he energy of ea	ch level			
	- n=1 represents	the LOWEST a	and MOST STA	BLE energy lev	vel or the			
	- n > 1 represen	t HIGHER ENE	RGY LEVELS	or				
	A. The Emission	Process: The	Conceptual Ap	<i>proach -</i> Hydro	gen's electron	prefers to "hang o	ut" in it	
	ground state, ho Electrons don't li the electron drop radiation.	os down to a <i>lo</i>	<i>wer</i> energy, a	Jy, vels, so the hyd photon of ene	drogen electro rgy is	n will drop back do in the	 wn. As form of	
	** Remen	ber, to jump to	o higher energ	ıy levels, energ	y must be		·	
	To fall do	wn to lower er	nergy levels, ei	nergy must be .		·		
	B. The Emission energy associate	Process Revisit d with differen	ted: <i>The Math</i> it energy level	nematical Appro transitions in t	<i>oach</i> - We can the hydrogen a	calculate the amo	unt of	
	- The energy tha	t an e ⁻ possess	es in a certain	energy level ca	n be determin	ed by the followin	g eq:	
	$E_n = -Rh (1/n^2)$	** Rh = R **	yberg's Consta n = principle	nt=2.18 x 10 -1 energy level	8J			
** As	n increases, what I	nappens to E _n ?						
	arger negative ene							
	to nucleus = stabil						 on	

- What if we want to calculate the energy absorbed/emitted during different energy level transitions? For example, what is the energy of a photon emitted when an electron drops from a $\mathbf{n} = 4$ energy level to the $\mathbf{n} = 2$ energy level? What would it's wavelength be? $\Delta E = E_f - E_i$ (since E is a state function)
C. The Emission Spectra of Hydrogen: The emission spectra of hydrogen includes a wide range of wavelengths from the IR to the UV. Each different wavelength corresponds to a different allowable energy level transition. * Label the spectrum region of each series.
* Series are named after scientists.
Problems: 1. Consider the following energy levels for the hydrogen atom: a. How many emission lines are possible? b. Which transition produces photons of the greatest energy?
 c. Which transition for the H atom produces the emission line with the longest wavelength? 2. What is the wavelength (in nm) of a photon emitted during a transition from n_i = 6 to n_f = 4 state in an H atom? What region of the electromagnetic spectrum corresponds to this wavelength?
D. Fluorescence - atoms absorb UV light in their electron structures and release it as energy (photons) with longer wavelengths (visible light spectrum)
E. Phosphorescence - same as fluorescence except the absorbed light is greater and this energy released (photons) will continue to be emitted for some time after the light source is turned off.