NOTES #21/Quantum Theory#3/AP CHEMISTRY | The Dual Nature of | of the Electron | | | | |--|--|---|---|----------------------------------| | So far, we've learne | ed that electromagne | etic radiation has both | and | characteristics | | - How is ele | ctromagnetic radiati | on wave-like? | | | | - How is ele | ctromagnetic radiati | on particle-like? | | | | _ ` | • | 1924 proposed that particl racteristics via the followi | es, too, have both wave-like and page expression: | <u>particle-like</u> behavior. | | "matter | λ = <u>h</u> | $-\lambda = wavelet$ | ength | | | wave
equation" | mv | - h = Planck
- mv = Mass | ength
's Constant (6.63x10 ⁻³⁴ J·s)
(kg) x Velocity (m/s)why do | es m have to be in kg? | | If de Broglie's expr | ression is true, then a | any particle with a mass ar | nd a velocity has an associated way | velength. | | - W | hy don't we ever he | ear about the waves emana | iting from flying baseballs??? | | | ** | As the mass | , the wav | elength | | | (in the | m when range of the ER s | reas the λ of an electron r | Il (0.06kg) moving at 62 m/s (~140 moving at a speed of 62 m/s is n of a tennis ball, or any other maccant. | m | | electrons with a certain the nucleus. | in energy (and corre | - Think of an | t in certain energy levels with a cerelectron as behaving like a circular. The length of the wave must fit it" exactlyotherwise, the wave wave wave wave wave wave wave wav | t the circumference of the | | complicated the perspecti | re now characterized and requires the use | by both particles-like <i>and</i> of complex "wave function ecessary. However, it is is | d wave-like, describing the motion ons (Ψ^2) ." The actual use of the mportant to understand the results | se wave functions is (from | | 1. We can't | simultaneously knoss is referred to as the | w the exact momentum (ne Heisenberg Uncertainty | n·v) ando
y Principle . Stated mathematically | of an electron with certainty y: | | $\Delta x \ell$ | $\Delta mv \geq \frac{h}{4\Pi}$ | Δx = uncertainly in | measuring position | | | <u> </u> | 411 | Δmv (also known as Δ | (Ap) = uncertainty in measuring ma | ss and velocity (momentum | | ** In other | words, | | | | | As Δx (position) becomes smaller (more known), Δp (momentum) becomes | | | | | | | | | mentum) of an electron in an atom
a certain energy would most likely | | | 3. Now, inst | tead of talking about | t Bohr's well-defined "orb | oits" we talk about ELECTRON C | LOUDS, probability and | about atomic oribitals... 4. To describe the distribution of electrons in atomic orbitals (or to solve wave functions), FOUR quantum numbers are required, n, l, m_l , m_s**** as discussed in the next section. B. THE QUANTUM NUMBERS!!! 1. The Principle Quantum Number (n) - n may have integer values ranging from 1 to whatever.... Represents the principal in which the e⁻ is located and is related to the average of the electron from the nucleus. - The ______n, the _____ away from the nucleus, the unstable. of subshells in an energy level. - Tells the EX: n=3 means this energy level has __ 2. The Angular Momentum Quantum Number or Azimuthal Quantum Number(1) for a given value of n, l can have integral values from 0 to (n-1) EX: for n=2, l could be of the orbital or sub-level. Represents the - different *l* values represent different shaped orbitals: Type of orbital 3. The Magnetic Quantum Number (m_I) - m_l has integral values from -l to +l or $m_l = 2l + 1$ Represents the different of orbitals in space. _______ of orbitals in space. ______ min other words, there are 3 different p orbitals, each of orbitals in space. ex: l = 1 (a p orbital), $m_l =$ one of a different orientation in space. - A MAXIMUM OF 2e-CAN FIT IN ANY ONE ORBITAL!! Type of Possible Total # Max # sublevel m₁ value of orient. of e Illustration Comments 1 2 - spherical shaped -1, 0, +1p ## 4. The Magnetic Spin Quantum Number (ms) - m_S is either +1/2 or -1/2 l value 0 1 2 3 - of an electron, either counterclockwise or clockwise. - Explanation: electrons spin on their own little axis..... - An electron can either spin clockwise (+1/2) or counterclockwise (-1/2) ^{****}ms is not needed to solve a wave function but is necessary to fully designate an e⁻ to an orbital.