NOTES #21/Quantum Theory#3/AP CHEMISTRY

The Dual Nature of	of the Electron			
So far, we've learne	ed that electromagne	etic radiation has both	and	characteristics
- How is ele	ctromagnetic radiati	on wave-like?		
- How is ele	ctromagnetic radiati	on particle-like?		
_ `	•	1924 proposed that particl racteristics via the followi	es, too, have both wave-like and page expression:	<u>particle-like</u> behavior.
"matter	λ = <u>h</u>	$-\lambda = wavelet$	ength	
wave equation"	mv	- h = Planck - mv = Mass	ength 's Constant (6.63x10 ⁻³⁴ J·s) (kg) x Velocity (m/s)why do	es m have to be in kg?
If de Broglie's expr	ression is true, then a	any particle with a mass ar	nd a velocity has an associated way	velength.
- W	hy don't we ever he	ear about the waves emana	iting from flying baseballs???	
**	As the mass	, the wav	elength	
(in the	m when range of the ER s	reas the λ of an electron r	Il (0.06kg) moving at 62 m/s (~140 moving at a speed of 62 m/s is n of a tennis ball, or any other maccant.	m
electrons with a certain the nucleus.	in energy (and corre	- Think of an	t in certain energy levels with a cerelectron as behaving like a circular. The length of the wave must fit it" exactlyotherwise, the wave wave wave wave wave wave wave wav	t the circumference of the
complicated the perspecti	re now characterized and requires the use	by both particles-like <i>and</i> of complex "wave function ecessary. However, it is is	d wave-like, describing the motion ons (Ψ^2) ." The actual use of the mportant to understand the results	se wave functions is (from
1. We can't	simultaneously knoss is referred to as the	w the exact momentum (ne Heisenberg Uncertainty	n·v) ando y Principle . Stated mathematically	of an electron with certainty y:
$\Delta x \ell$	$\Delta mv \geq \frac{h}{4\Pi}$	Δx = uncertainly in	measuring position	
<u> </u>	411	Δmv (also known as Δ	(Ap) = uncertainty in measuring ma	ss and velocity (momentum
** In other	words,			
As Δx (position) becomes smaller (more known), Δp (momentum) becomes				
			mentum) of an electron in an atom a certain energy would most likely	
3. Now, inst	tead of talking about	t Bohr's well-defined "orb	oits" we talk about ELECTRON C	LOUDS, probability and

about atomic oribitals...

4. To describe the distribution of electrons in atomic orbitals (or to solve wave functions), FOUR quantum numbers are required, n, l, m_l , m_s**** as discussed in the next section. B. THE QUANTUM NUMBERS!!! 1. The Principle Quantum Number (n) - n may have integer values ranging from 1 to whatever.... Represents the principal in which the e⁻ is located and is related to the average of the electron from the nucleus. - The ______n, the _____ away from the nucleus, the unstable. of subshells in an energy level. - Tells the EX: n=3 means this energy level has __ 2. The Angular Momentum Quantum Number or Azimuthal Quantum Number(1) for a given value of n, l can have integral values from 0 to (n-1) EX: for n=2, l could be of the orbital or sub-level. Represents the - different *l* values represent different shaped orbitals: Type of orbital 3. The Magnetic Quantum Number (m_I) - m_l has integral values from -l to +l or $m_l = 2l + 1$ Represents the different of orbitals in space.
_______ of orbitals in space.
______ min other words, there are 3 different p orbitals, each of orbitals in space. ex: l = 1 (a p orbital), $m_l =$ one of a different orientation in space. - A MAXIMUM OF 2e-CAN FIT IN ANY ONE ORBITAL!! Type of Possible Total # Max # sublevel m₁ value of orient. of e Illustration Comments 1 2 - spherical shaped -1, 0, +1p

4. The Magnetic Spin Quantum Number (ms)

- m_S is either +1/2 or -1/2

l value

0

1

2

3

- of an electron, either counterclockwise or clockwise.
- Explanation: electrons spin on their own little axis.....
- An electron can either spin clockwise (+1/2) or counterclockwise (-1/2)

^{****}ms is not needed to solve a wave function but is necessary to fully designate an e⁻ to an orbital.