Notes#22/Electron Configurations/AP Chemistry | Electron Configurations - how will be focusing on the MOST electron configurations. | | | | |---|--|--|---| | TOP SEVEN THINGS TO KNOW A | ABOUT ELECTRON CONF | IGURATIONS: | | | 1. Always fill a | energy o | rbital before moving | on to higher energy orbitals. | | 2. A max ofThis is THE PAULI EXCLU: atom can have the same for a a | | | ave to be spinning opposite.
lectrons in an | | 3. Unpaired before Paired.- This is HUND'S RULE which minimize | | | it as much as possible so as to | | 4. Paramagnetic vs Diamagnetic. Paramagnetic - substar | nces attracted to a magne | t. Why? because the | substance has UNPAIRED | | electrons which causes an | unequal magnetic field. | EX: N,, | ,, etc. | | Diamagnetic - substance substance has NO UNPAI | e that is not (or only sligh
RED electrons which caus | tly) attracted to a mases the +1/2 and -1/2 s | gnet. Why? because the pins to all cancel out. | | EX:,, | , etc. | | | | ** Any atom with an odd ** Atoms with even #'s of electrons are distributed in EX: Be (4e-) is | n the orbitals. | nagnetic or diamagnet | ic depending on how the | | C (6e-) is | (|) | | | Zn (30 e-) is | (|) | | | Fe (26 e-) is | (|) | | | 5. Valence Electrons electrons in the | | principal quantum nu | mber of an atom. | | EX: N has
- Just by looking at the period
of v.e an element has is equa | valence electrons.
ic table, you can see how
I to that element's group | many valence e- an e | lement will have. The numbe | | - Valence e- are so important l | pecause they are the ones | involved in | and | | - All the other electrons are ca | lled elect | rons. | | | 6. <i>Noble Gas configurations</i> - sho VALENCE e | rt-hand way of writing el | ectron configurations | that focuses on just the | | STEP ONE: First, we have to l | know some about how th | e Periodic Table is org | janized. (other side) | | The P.T. was designed so Horizontal rows are called The P.T. is divided into one orbital an element's highe | ed <i>periods</i> . Each period r
orbital blocks, s-block, p-b | epresents a Principal I
lock, d-block, f-block. | Energy level, n=1, n=2, n=3, | | - The P.T. even takes into accoun
the d block is always <u>1</u> principal | t the overlap among the quantum number lower t | d and f orbitals in the
han the s and p block | filling order. Because of this, s for any particular row. | | Likewise, the f-block is always | _ principal quantum numl | oers | · | | | | | | | | | | | | | | | | | • | • | | |------------------------------------|---------------|-------------------|---------|---------|-----------------|-------------------|--------------------------|---------|--------------------|--------------|---------|---------------------------------|-----------------|--------|---------|------|--| close:
confi | st nob | le gas
on of t | with a | lesser | atomi | c num | ne nob
ber. T | hen "re | ead" th | e perio | odic ta | ible to | deteri | mine t | he elec | tron | | | | | - | guratio | | | | | | | | | | | | | | | | A. D-block exceptions. Involve the | - The | electr | on cor | nfigura | tion w
The e | ve wou
e- conf | ıld exp
igurati | ect for | Cr is _
ually i |
5: | [Ar] 4 | 4s ¹ 3d ⁵ | | | | · | | | ** W | | | | | | | | | | | | | | | | · | | | ** W | - Th
hy??? | | | | | | ould <i>ex</i>
onfigu | | | s
Ily is: | [/ | \r]4s ¹ 3 | d ¹⁰ | | | · | | Ca: Cr: EX: Na: