Notes#23/Periodic Relationships#1/AP Chemistry

II.	Electron Configurations of CATIONS () and ANIONS () 1. Determining ionic e- configurations of the REPRESENTATIVE ELEMENTS ** Elements gain or lose e- so that they can be more STABLE by					
	** In cations, the e-'s in the first to be removed!			occupied n shell (or _	energy shell) are the	
	Na: Mg Al F O N	Neutral [Ne]3s¹ [Ne]3s² [Ne]3s²3p¹ [He]2s²2p⁵ [He]2s²2p⁴ [He]2s²2p³	Ion conf.	<u>Ion Symbol</u>	** Just by looking at the P.T. we can predict what ion charge an element will take, right?	
	** Notice that all of the above elements form ions so as to have 2. ISOELECTRONIC - when ions and elements have the SAME e- configuration. F ⁻ , O ² -and N ³ -are isoelectronic because they all have e- and the same e- conf. as EX. Which of the following are isoelectronic with Ar??? Ca ²⁺ , Br ⁻ , S ²⁻ , Mg ²⁺ , K ⁺ , Ga ³⁺ , Cl ⁻					
	- W1	transition metals, alw	u suppose trans ays remove ele	ition metals always make ctrons first from the HI	? GHEST energy orbital in THE	
		_		·	out distance from nucleus!	
	** N	1 0 1	tion metals cor	_	Mn ²⁺ : nsthey just lose e- in their CuSO ₄ , ZnCl ₂ etc	
	ACTICE	:	•	more than one possible ion Fe ³⁺ ions. Explain why an	n charge as seen below d how the Fe ³⁺ ion would exist?	

2. Copper commonly forms $both Cu^{2+}$ and Cu^{1+} ions? Why do you think a Cu^{1+} ion would form.

III. The FIVE Major Periodic Trends					
 A. ATOMIC RADII - a measure of the "size" of an atom. 1. Considering atomic orbitals just represent and not fixed physical bou how could a definite radius of an atom actually be determined??? 	ndaries,				
- Atomic radii is actually determine indirectly - it's 1/2 the distance between two nuclei in two atoms either in a molecule or 3-d lattice structure (bonding atomic radius).	adjacent				
THE TREND - As you go down the PT atomic radii As you go across the PT, atomic radii					
3. The explanation: ** As you go down the PT atomic radii This should make sense becaus go down, the quantum number which is directly proportional to In other words, as n increases, the size	as you				
** As you go <u>across</u> the PT atomic radii Why would this be so?? This tr be explained via a process called SHIELDING (which we talked about briefly last chapter).	end can				
SHIELDING:					
 THE BOTTOM LINE: The more the (+) protons in the nucleus can pull on the outer e- the the atomic radii. So, as you go across the PT, the pull of the protons For atoms, with three or more electrons, the electrons in a given shell are shielded by electrons in a given shell are shielded by electrons. 	Why?				
shells (shells closer to the nucleus). In other words, electrons that are "shielded" can't feel the of the nucleus as much because the inner electrons are in the way.					
3. Electrons in the <i>same</i> shell can also "shield" each other, but only in the same n shell. Remember (with respect to energy).	r, 2s < 2p				
4. Put points 2 and 3 together and you can figure the EFFECTIVE NUCLEAR CHARGE that an e would actually feel.	ectron				
$Z_{ m eff} = Z_{ m actual} - 0$ Nuclear effective charge # of protons core electrons					
EX, 1. Look at Li. Li has 3p+ and 3e- 2. Look at Be. Be has 4p+ and 4e					
*** Basically, as you go across the P.T., the amount of shielding is but the # of p-					
nucleus The# of p+ pull on the outer e causir radii to	ig atomic				