Notes#24 Periodic Relationships#2/AP Chemistry

- The general tre variation is seen in th	nd for atomic radii holds very true for the rene de deblock and feblock. (look at P.T. Atomic	epresentative elements. However, some Radius image)
PRACTICE: 1. Arrange the follow	wing atoms in order of increasing atomic rac	dii: P, Si, N
2. Arrange the follow	wing atoms in order of increasing atomic rad	lii: Ne, Mg, P
	C RADII - Because atoms and ions of the sexpect atomic radii and ionic radii to have d	
- THE TREND -	The radii of cations are th Why? Take a look at what happens when	van those of the corresponding neutral atom. you take away an e ⁻ from Na.
	** You lose	This makes a cation significantly smaller.
	** As the (+) charge increases, the cation of the cation of the same e configural p+ pulling on the remaining electrons and	gets smaller. Mg ²⁺ < Na ⁺ . Why? tion (isoelectronic) but Mg ²⁺ has Na ⁺ only has p+ pulling on the e ⁻
	- The radii of anions aret Why? When an e- is added, there is an	than those of the corresponding neutral atom
PRACTICE: 1. Circle the s	smaller ion in each pair and explain your reas	soning:
K^{\dagger} and Li^{\dagger}	$\mathrm{Au}^{\scriptscriptstyle +}$ and $\mathrm{Au}^{\scriptscriptstyle 3+}$	N³- or F
	llowing ions in order of increasing atomic ra IZATION ENERGY - the amount of energy one mole of e- from the ground state	
** In other w	ords, the magnitude of the ionization energy	y is a measure of how the the the an e- is held, the more energy is IZATION ENERGY.
** lonization e	energy is always an	process and a () energy value.
	D - <i>As you move across the periodic table from I</i> ** It becomes harder and harder to re	
-	As you move down the periodic table from low	v n shells to higher n shells, ionization energy

 $^{^{**}\,}$ Notice the BIG correlation between the SIZE of the atom, the attractive forces from the nucleus and the Ionization energy........

EXCEPTIONS in the Ionizat that there is that eler	tion Energy trend. Most of th ment of	e following exceptions are to a full o	driven by the fact r half filled sublevel.
- The ionization e	etween 2A (alkaline E. metals) energy for Be is > than that for e ⁻ conf, draw out orbital diagra B: [He	r B. Why? ams	
** Less energy There	is required to remove a single is some stability associated wi d pretty much consistent all th	th a FULL s orbital.	
- The ionization e	etween 5A (nitrogen) and 6A of the series of N is > than that for 0 errors, draw out orbital diag.		
N: [He]		o: [He]	
	remove a single e from the C) atom than from the N ato	om where the
p orbit ** Is this trend	al is $\frac{1}{2}$ full. If pretty much consistent all the	ne way down the P.T.??	
** Primarily, we have FIRST electro	rst lonization Energy. Sec been taking about the FIRST i on). The SECOND ionization o electron and so-on.	onization energy, h, (energ	gy needed to remove the
1. THE TREND - I ₁ <	$I_2 < I_3$ Why do you s	uppose this is?	
2. PRACTICE: Which of the	following atoms should have a	a smaller second ionization	and WHY? Mg or Na?
	AFFINITY - the energy chang mole of atoms in the		
1. Overall, electron affi	nity is a measure of how stable a	n atom becomes upon	an electron.
Ex. Let's look at Fluo	orine. F (g) + e> F	$\Delta H^{\circ} = -328 \text{ kJ/mol}$	
This should make sense beca does "want" an e- and resulta	use fluorine is just one e ⁻ away antly, it becomes much more _	y from having a noble gas c	onfiguration and really on accepting one.
"wants" an electron. If an ele	e larger the negative number ement has a positive electron a upon accepting an electi	affinity, that means that th	
	ot a really clear-cut trend goin ne trends are summarized belo		
(a) The E.A. of groany other element	oups and (wit ts.	th the greatest) are	much GREATER than
	e noble gases are slightly	Therefor	re, the anions of these
	metals have small negative E.A alues with some positive value		
(d) The electron af	finities of the metals are gene	rallythan t	hose of the nonmetals.