NOTES #46 Kinetics IV/Reaction Mechanisms

1. Consider the followin	g balanced reaction:	$2 \text{ NO } (g) + O_2 (g)$	\rightarrow 2 NO ₂ (g)
--------------------------	----------------------	-------------------------------	-------------------------------------

- Sure, the balanced reaction tells what the reactants are and what the products are but does NOT tell us HOW the reaction actually takes place.
- Most reactions take place in a number of simple reactions called ELEMENTARY STEPS. Put these elementary steps together and you have a reaction mechanism.

Reaction Mechanism for:

$$2 \text{ NO (g)} + O_2 (g) \rightarrow 2 \text{ NO}_2 (g)$$

(1)
$$2NO(g) \rightarrow N_2O_2(g)$$

(2)
$$N_2O_2(g) + O_2(g) \rightarrow 2NO_2(g)$$

Overall Reaction:

- The elementary steps MUST add up to equal the overall balanced equation.
- N₂O₂ (g) is an ______. It appears in the mechanism of the reaction but NOT in the overall balanced reaction.
- From the elementary steps, you can determine the MOLECULARITY of a reaction. Molecularity is the number of molecules reacting in an elementary step:
 - a. UNIMOLECULAR REACTION elementary step in which only one reacting molecular participates. Ex:
 - b. BIMOLECULAR REACTION elementary step that involves TWO molecules. The two molecules can be the same or different. Bimolecular reactions are the most common. Ex:
 - c. TERMOLECULAR REACTION reactions that involve the participation of three molecules in one elementary steps. How likely do you suppose termolecular reactions are??? Why?
- 2. Mechanisms and Rate Laws:
- a. The order for each reactant in an elementary step is EXACTLY equal to the stoichiometric coefficients and each elementary step has it's own rate of reaction and k value. EX:

$$A \rightarrow products$$
 rate =

$$A + B \rightarrow products$$
 rate =

$$A + A \rightarrow products$$
 rate =

- ** Why can't you do the same for the overall balanced equation?
- b. When we study a reaction that has more than one elementary step, the ______step or the rate-determining step determines the order of the over all reaction. It's this rate law that must be proven experimentally....

EX 1: This is what MOST examples will be like...Consider the following equation: $2 \text{ NO}_2 + \text{F}_2 \rightarrow 2 \text{ NO}_2 \text{F}$

Experimentally, the rate law for this reaction is rate = $k[NO_2][F_2]$. A suggested mechanism for this reaction is as follows:

$$NO_2 + F_2 \rightarrow NO_2F + F$$
 slow step

$$F + NO_2 \rightarrow NO_2F$$
 fast

Is this an acceptable mechanism? Does it meet the following conditions?

- 1. Do the elementary steps add up to equal the overall balanced reaction?
- 2. Does the rate law of the rate-determining step match the experimentally determined rate law?

EX2: The reaction between NO₂ and CO to product NO and CO₂ is believed to occur via two steps:

step 1:
$$NO_2 + NO_2 \rightarrow NO + NO_3$$
 The experimental rate law is rate = $k[NO_2]^2$.
step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$

- (a) Write the equation for the overall reaction.
- (b) Identify the intermediate.
- (c) What can you say about the relative rates of step 1 and step 2???

EX3: What if TWO of the elementary steps are playing a role in determining the overall rate of a reaction?

Consider the following reaction: $Cl_2 + CHCl_3 \rightarrow HCl + CCl_4$

The experimental rate law is rate = $k \left[Cl_2 \right]^{1/2} \left[CHCl_3 \right]$

Proposed mechanism is: $Cl_2 \Leftrightarrow 2 Cl \text{ both directions are fast with equal rates}$

$$Cl + CHCl_3 \rightarrow HCl + CCl_3$$
 slow

$$CCl_3 + Cl \rightarrow CCl_4$$
 fast

- B. Return to CATALYSTS: 1. Purpose of a catalyst? 2. How do catalysts work? There are a couple different kinds.
- a. HETEROGENEOUS CATALYSIS the reactants and the catalyst are in ______.

It is very common that a solid surface is the catalyst and the reactants are gases.

b. HOMOGENEOUS CATALYSTS – the reactants and the catalyst are in ______.

EX: Makin' Ammonia. $N_2(g) + H_2(g) -----> 2 NH_3(g)$. Even though this reaction is an exothermic reaction, it is EXTREMELY slow at room temp. Why would this be???

- So, heat it up, you may say. Well, when you do that, you start decomposing the NH₃ back to it's elements which sort of defeats the purpose. So, what to do?