Notes #58 Entropy, Free E, and K

			Y? It is represented by th				
disorder in it so	all matter has a	S value except whe	n matter is:	of a system. All matter has some and			
How do you ca	lculate ΔS°_{ryn} (the cl	ange in entropy during	a certain process)?				
,	TXII (HIV)		,				
		$\Delta S^{\circ}_{rxn} = \Sigma n S^{\circ}_{pr}$	$_{ m roducts}$ - $\Sigma n S^{\circ}_{ m reactants}$				
+ΔS =	in disc	order; - $\Delta S = $	in disorder				
-	-	ocess would have a +∆ b.	S or a - Δ S. H ₂ (g) \rightarrow 2 H (g)	_			
c. $2 H_2(g) + O$	$2 (g) \rightarrow 2 H_2O(l)$	d.	$NH_4Cl(s) \rightarrow NH_3(g) + H_3(g)$	HCl (g)			
Second I aw o	of Thormodynamics	The entropy of the un	iverse must INCDEASE in	a a spontaneous process and remain			
				n a spontaneous process and remair			
to a increase in	the entropy of the un	iverse.	An and	AS can continue			
Gibb's Free F	nergy (AG) - a result	of the 2nd law of Ther	modynamics				
				. ΔG° is a measure of the			
OVERALL spo	ontaneity or favorability	ty of a process. ΔG is j	proportional to ΔS _{universe}	ΔG° is a measure of the			
2. ΔG takes into	o account ΔH , T, and	ΔS $\Delta G = \Delta H$	- T Δ S or, under STANDA	RD conditions			
		$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{G}^{\circ}$	ΓΔS°				
ΔG is (-)	Energy is RELEASED (available to do work). Entropy of the universe (surroundings) in the forward reaction.						
ΔG is (+)	Energy is REQUIRED. Entropy of the universe (surroundings) in the forward reaction, but it is favorable in the reaction						
$\Delta G = 0$				No net change in ΔG .			
4. TWO ways o	of calculating ΔG° _{rxn}	. a. We can calculate th	ne $\Delta {\rm G^{\circ}}_{ m rxn}$ the same way w	re would calculate ΔH° _{rxn} .			
		$\Delta G^{\circ}_{rxn} = \Sigma n G_{f}^{\circ}_{pr}$	$_{ m coducts}$ - $\Sigma n^{\circ}G_{ m freactants}$				
** AG° a = stan	dard frag anargy of fo	rmation — the free ene	rgy change that occurs who	en of the			
		ements in their standard		of the			
** Just like wi	th $\Delta \mathrm{H^\circ}_{\mathbf{f}}$, the $\Delta \mathrm{G^\circ}_{\mathbf{f}}$ fo	r elements in their mo	ost stable form is	We can also calculate the			
ΔG°_{rxn} using		$\Delta G^{\circ} = \Delta H^{\circ} - T_{\bullet}$	ΔS°				
5. Predicting th ΔH° Examp	ΔS°	quation, $\Delta G^{\circ} = \Delta H^{\circ} - \Delta G^{\circ}$	TΔS. There are FOUR po Comment	ossible outcomes of this equation.			
()	7.5						
(-)	(+)						

(+)	(-)				
(-)	(-)				
(+)	(+)				
			e, you can predict the exact ten and ΔS° and solving for T	nperature that ΔG° is going	
EX 2: If ΔH° for a react temperature WILL this p			Kwill this process be spontage	neous at 25°C? At what	
- What errors are we act	ually bringing	into the temperature det	termination calculation?		
EX3: 1997 #7 Free Energy and Chemic	cal Equilibria:				
_		-	conditions, but soon after, we V we use ΔG instead of ΔG° .	VILL NOT be in standard	
* ΔG varies as the reaction. The relationship between	•		nt for a reaction under standard $\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{R}'$		
3. We can illustrate the difference between ΔG° and $\Delta G.$			$R = 8.314 \text{ J/K} \cdot \text{mol}$ $Q = \text{reaction quotient}$ $T = \text{temperature in Kelvin}$		
	_				
3. When the system DO $\Delta G = $ @ E	_	brium, how will the equal $\Delta G = \Delta G^{\circ} + RT \ln Q$	uation above change? $\Delta G^{\circ} = -RTlnK$	OR,	
$Q = K_{eq} @ Eq$		$0 = \Delta G^{\circ} + RT lnK$	$-\Delta G^{\circ}/RT = \ln K$	$K = e^{{\Lambda}G^{\circ}/RT}$	
- Notice, that the LARC	GER K is, the _	ΔG°	. Does this make sense to us?		
EX 4: Use the ΔG° in yo	our appendix, to	determine K _p for the	following rxn at 25°C: 2 O ₃ (g	$\rightarrow 2 O_2(g)$	
EX 5: $K_p = 4.40$ at 2000). K for the foll	owing reaction: H ₂ (g)	$+ CO_2(g) \rightleftharpoons H_2O(g) + CO$) (g)	
(a) Determine ΔG° .					
(b) Determine ΔG when	the partial pres	ssures are $P_{H2} = 0.25$ a	tm, $P_{CO2} = 0.78$ atm, $P_{H2O} =$	$0.66 \text{ atm}, P_{CO} = 1.20 \text{ atm}$	